Epigallocatechin Gallate Protects against Hypoxia-Induced Inflammation in Microglia via NF-κB Suppression and Nrf-2/HO-1 Activation
- PMID: 35409364
- PMCID: PMC8999549
- DOI: 10.3390/ijms23074004
Epigallocatechin Gallate Protects against Hypoxia-Induced Inflammation in Microglia via NF-κB Suppression and Nrf-2/HO-1 Activation
Abstract
Hypoxia-induced neuroinflammation in stroke, neonatal hypoxic encephalopathy, and other diseases subsequently contributes to neurological damage and neuronal diseases. Microglia are the primary neuroimmune cells that play a crucial role in cerebral inflammation. Epigallocatechin gallate (EGCG) has a protective antioxidant and anti-inflammatory effects against neuroinflammation. However, the effects of EGCG on hypoxia-induced inflammation in microglia and the underlying mechanism remain unclear. In this study, we investigated whether EGCG might have a protective effect against hypoxia injury in microglia by treatment with CoCl2 to establish a hypoxic model of BV2 microglia cells following EGCG pre-treatment. An exposure of cells to CoCl2 caused an increase in inflammatory mediator interleukin (IL)-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2 expression, which were significantly ameliorated by EGCG via inhibition of NF-κB pathway. In addition, EGCG attenuated the expression of hypoxia-inducible factor (HIF)-1α and the generation of ROS in hypoxic BV2 cells. Furthermore, the suppression of hypoxia-induced IL-6 production by EGCG was mediated via the inhibition of HIF-1α expression and the suppression of ROS generation in BV2 cells. Notably, EGCG increased the Nrf-2 levels and HO-1 levels in the presence of CoCl2. Additionally, EGCG suppressed hypoxia-induced apoptosis of BV2 microglia with cleavage of poly (ADP-ribose) polymerase (PARP) and caspase-3. In summary, EGCG protects microglia from hypoxia-induced inflammation and oxidative stress via abrogating the NF-κB pathway as well as activating the Nrf-2/HO-1 pathway.
Keywords: NF-κB; epigallocatechin gallate; hypoxia; inflammation; microglia.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Correia S.C., Carvalho C., Cardoso S., Santos R.X., Plácido A.I., Candeias E., Duarte A.I., Moreira P.I. Defective HIF signaling pathway and brain response to hypoxia in neurodegenerative diseases: Not an “iffy” question! Curr. Pharm. Des. 2013;19:6809–6822. doi: 10.2174/1381612811319380013. - DOI - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
