DNA base changes and alkylation following in vivo exposure of Escherichia coli to N-methyl-N-nitrosourea or N-ethyl-N-nitrosourea
- PMID: 3540961
- PMCID: PMC304203
- DOI: 10.1073/pnas.84.2.344
DNA base changes and alkylation following in vivo exposure of Escherichia coli to N-methyl-N-nitrosourea or N-ethyl-N-nitrosourea
Abstract
Dideoxy chain-termination DNA sequencing was used to determine the specific DNA base changes induced after in vivo exposure of Escherichia coli to N-methyl-N-nitrosourea (MNU) and N-ethyl-N-nitrosourea (ENU) using the xanthine guanine phosphoribosyltransferase (gpt) gene as the genetic target. The resultant mutation spectra were compared with the levels of O6-alkylguanine and O4-alkylthymidine in genomic DNA immediately after exposure. All (39/39) of the MNU-induced mutations were G X C----A X T transitions. In contrast, 24/33 point mutations isolated following ENU treatment were G X C----A X T transitions, 7/33 were A X T----G X C transitions, 1/33 was a G X C----C X G transversion, and 1/33 was an A X T----C X G transversion. Three large insertions, probably of spontaneous origin, were also isolated. O4-alkylthymidine/O6-alkylguanine ratios were 0.014 for MNU and 0.28 for ENU. These data suggest that the difference in the mutation spectrum of MNU versus ENU may be attributed, in part, to the different ratio of O6-alkylguanine versus O4-alkylthymidine produced in the DNA. Of the G X C----A X T transitions, 82% of the MNU- and 71% of the ENU-induced mutations occurred at the middle guanine of the sequence 5'-GG(A or T)-3'.
References
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous
