Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 18;13(11):3227-3232.
doi: 10.1039/d1sc06729j. eCollection 2022 Mar 16.

Iridium-catalyzed asymmetric trans-selective hydrogenation of 1,3-disubstituted isoquinolines

Affiliations

Iridium-catalyzed asymmetric trans-selective hydrogenation of 1,3-disubstituted isoquinolines

Alexia N Kim et al. Chem Sci. .

Abstract

The development of the first asymmetric trans-selective hydrogenation of 1,3-disubstituted isoquinolines is reported. Utilizing [Ir(cod)Cl]2 and a commercially available chiral Josiphos ligand, a variety of differentially substituted isoquinolines are hydrogenated to produce enantioenriched trans-tetrahydroisoquinolines in good yield with high levels of enantioselectivity. Directing group studies demonstrate that the hydroxymethyl functionality at the C1 position is critical for hydrogenation to favor the trans-diastereomer. Preliminary mechanistic studies reveal that non-coordinating chlorinated solvents and halide additives are crucial to enable trans-selectivity.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. (A) Challenges in diastereoselectivity of trans-selective arene hydrogenation. (B) Our research on iridium-catalyzed asymmetric hydrogenation of 1,3-disubstituted isoquinolines.
Scheme 1
Scheme 1. Synthetic derivatizations of product 5a.
Scheme 2
Scheme 2. Control experiments of the asymmetric trans-selective hydrogenation by using (A) TBAI instead of TBABr and (B) THF instead of 1,2-DCE.
Scheme 3
Scheme 3. Deuterium experiments of (A) D2 and CD3COOD, (B) observed β-hydride elimination pathway, (C) D2 and protic AcOH, and (D) H2 and CD3COOD.

References

    1. For recent reviews of asymmetric hydrogenation of heteroarenes, see:

    2. Wang D.-S. Chen Q.-A. Lu S.-M. Zhou Y.-G. Chem. Rev. 2012;112:2557–2590. doi: 10.1021/cr200328h. - DOI - PubMed
    3. Zhou Y.-G. Acc. Chem. Res. 2007;40:1357–1366. doi: 10.1021/ar700094b. - DOI - PubMed
    4. Zhao D. Glorius F. Angew. Chem., Int. Ed. 2013;52:9616–9618. doi: 10.1002/anie.201304756. - DOI - PubMed
    5. Kim A. N. Stoltz B. M. ACS Catal. 2020;10:13834–13851. doi: 10.1021/acscatal.0c03958. - DOI - PMC - PubMed
    6. Luo Y.-E. He Y.-M. Fan Q.-H. Chem. Rec. 2016;16:2697–2711. doi: 10.1002/tcr.201600095. - DOI - PubMed
    7. Fleury-Brégeot N. de la Fuente V. Castillón S. Claver C. ChemCatChem. 2010;2:1346–1371. doi: 10.1002/cctc.201000078. - DOI
    1. For recent reviews of asymmetric Cformula imageN bond hydrogenation, see:

    2. Cabré A. Verdaguer X. Riera A. Chem. Rev. 2022;122:269–339. doi: 10.1021/acs.chemrev.1c00496. - DOI - PMC - PubMed
    3. Abed Ali Abdine R. Hedouin G. Colobert F. Wencel-Delord J. ACS Catal. 2021;11:215–247. doi: 10.1021/acscatal.0c03353. - DOI
    4. Molina Betancourt R. Echeverria P.-G. Ayad T. Phansavath P. Ratovelomanana-Vidal V. Synthesis. 2021;53:30–50. doi: 10.1055/s-0040-1705918. - DOI
    5. Barrios-Rivera J. Xu Y. Wills M. Vyas V. K. Org. Chem. Front. 2020;7:3312–3342. doi: 10.1039/D0QO00794C. - DOI
    6. Liu Y. Yue X. Luo C. Zhang L. Lei M. Energy Environ. Mater. 2019;2:292–312. doi: 10.1002/eem2.12050. - DOI
    1. Wiesenfeldt M. P. Nairoukh Z. Dalton T. Glorius F. Angew. Chem., Int. Ed. 2019;58:10460–10476. doi: 10.1002/anie.201814471. - DOI - PMC - PubMed
    1. Gelis C. Heusler A. Nairoukh Z. Glorius F. Chem.–Eur. J. 2020;26:14090–14094. doi: 10.1002/chem.202002777. - DOI - PMC - PubMed
    1. For examples of trans-selective arene hydrogenation, see:

    2. Wollenburg M. Heusler A. Bergander K. Glorius F. ACS Catal. 2020;10:11365–11370. doi: 10.1021/acscatal.0c03423. - DOI - PMC - PubMed
    3. Murugesan K. Senthamarai T. Alshammari A. S. Altamimi R. M. Kreyenschulte C. Pohl M.-M. Lund H. Jagadeesh R. V. Beller M. ACS Catal. 2019;9:8581–8591. doi: 10.1021/acscatal.9b02193. - DOI
    4. Li H. Wang Y. Lai Z. Huang K.-W. ACS Catal. 2017;7:4446–4450. doi: 10.1021/acscatal.7b01316. - DOI
    5. Tungler A. Szabados E. Org. Process Res. Dev. 2016;20:1246–1251. doi: 10.1021/acs.oprd.6b00073. - DOI
    6. Maegawa T. Akashi A. Yaguchi K. Iwasaki Y. Shigetsura M. Monguchi Y. Sajiki H. Chem.–Eur. J. 2009;15:6953–6963. doi: 10.1002/chem.200900361. - DOI - PubMed
    7. Jansat S. Picurelli D. Pelzer K. Philippot K. Gómez M. Muller G. Lecante P. Chaudret B. New J. Chem. 2006;30:115–122. doi: 10.1039/B509378C. - DOI