Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Nov 4;25(22):7192-200.
doi: 10.1021/bi00370a064.

Mechanistic studies of a protonolytic organomercurial cleaving enzyme: bacterial organomercurial lyase

Mechanistic studies of a protonolytic organomercurial cleaving enzyme: bacterial organomercurial lyase

T P Begley et al. Biochemistry. .

Abstract

Mechanistic studies of the protonolytic carbon-mercury bond cleavage by organomercurial lyase from Escherichia coli (R831) suggest that the reaction proceeds via an SE2 pathway. Studies with stereochemically defined substrates cis-2-butenyl-2-mercuric chloride (1) and endo-norbornyl-2-mercuric bromide (2) reveal that a high degree of configurational retention occurs during the bond cleavage, while studies with exo-3-acetoxynortricyclyl-5-mercuric bromide (3) and cis-exo-2-acetoxy-bicyclo[2.2.1]hept-5-enyl-3-mercuric bromide (4) show that the protonolysis proceeds without accompanying skeletal rearrangement. Kinetic data for the enzymatic reactions of cis-2-butenyl-2-mercuric chloride (1) and trans-1-propenyl-1-mercuric chloride (6) indicate that these substrates show enhanced reaction rates of ca. 10-200-fold over alkylvinylmercurials and unsubstituted vinylmercurials, suggesting that the olefinic methyl substituent may stabilize an intermediate bearing some positive charge. Enzymatic reaction of 2-butenyl-1-mercuric bromide (5) yields a 72/23/5 mixture of 1-butene/trans-2-butene/cis-2-butene, indicative of intervening SE2' cleavage. The observation of significant solvent deuterium isotope effects at pH 7.4 of Vmax (H2O)/Vmax(D2O) = 2.1 for cis-2-butenyl-2-mercuric chloride (1) turnover and Vmax(H2O)/Vmax(D2O) = 4.9 for ethylmercuric chloride turnover provides additional support for a kinetically important proton delivery. Finally, the stoichiometric formation of butene and Hg(II) from 1 and methane and Hg(II) from methylmercuric chloride eliminates the possibility of an SN1 solvolytic mechanism. As the first well-characterized enzymatic reaction of an organometallic substrate and the first example of an enzyme-mediated SE2 reaction the organomercurial lyase catalyzed carbon-mercury bond cleavage provides an arena for investigating novel enzyme structure-function relationships.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources