Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May:284:121487.
doi: 10.1016/j.biomaterials.2022.121487. Epub 2022 Mar 24.

3D-printable plant protein-enriched scaffolds for cultivated meat development

Affiliations

3D-printable plant protein-enriched scaffolds for cultivated meat development

Iris Ianovici et al. Biomaterials. 2022 May.

Abstract

Cultivated meat harnesses tissue engineering (TE) concepts to create sustainable, edible muscle tissues, for addressing the rising meat product demands and their global consequences. As 3D-printing is a promising method for creating thick and complex structures, two plant-protein-enriched scaffolding compositions were primarily assessed in our work as 3D-printable platforms for bovine satellite cells (BSC) maturation. Mixtures of pea protein isolate (PPI) and soy protein isolate (SPI) with RGD-modified alginate (Alginate(RGD)) were evaluated as prefabricated mold-based and 3D-printed scaffolds for BSC cultivation, and ultimately, as potential bioinks for cellular printing. Mold-based protein enriched scaffolds exhibited elevated stability and stiffness compared to ones made of Alginate(RGD) alone, while allowing unhindered BSC spreading and maturation. Extrusion based 3D-printing with the two compositions was then developed, while using an edible, removable agar support bath. Successfully fabricated constructs with well-defined geometries supported BSC attachment and differentiation. Finally, cellular bioprinting was demonstrated with PPI-enriched bioinks. Cell recovery post-printing was observed in two cultivation configurations, reaching ∼80-90% viability over time. Moreover, cells could mature within 3D-printed cellular constructs. As animal-derived materials were avoided in our scaffold fabrication process, and pea-protein is known for its low allergic risk, these findings have great promise for further cultivated meat research.

Keywords: Cultured meat; Engineered bovine muscle tissue; Nutritious scaffolds; Plant protein bioink; Three dimensional bioprinting; Tissue engineering.

PubMed Disclaimer

LinkOut - more resources