Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr 14;15(1):96.
doi: 10.1186/s13071-022-05226-6.

Leishmania infantum infection serosurveillance in stray dogs inhabiting the Madrid community: 2007-2018

Affiliations

Leishmania infantum infection serosurveillance in stray dogs inhabiting the Madrid community: 2007-2018

Aurora Müller et al. Parasit Vectors. .

Abstract

Background: Leishmaniosis is an endemic zoonotic disease in the Mediterranean basin caused by Leishmania infantum and transmitted by phlebotomine sandflies. While in dogs disease may be severe, leishmaniosis is also a public health concern as was shown in the largest outbreak of human leishmaniosis (HL) in Europe in 2009 occurring in the Madrid region. The aim of the present study was to assess the applicability of the Leishmaniosis Surveillance Program (LeishSP) established in Madrid in 1996 by examining trends in L. infantum seroprevalence and associated epidemiological risk factors based on data for the 2007-2018 period.

Methods: The study population consisted of 3225 stray dogs from 17 animal shelters collaborating with the LeishSP. Seroprevalences were recorded twice annually (April and November) from 2007 to 2018. In each yearly period, a minimum of 100 dogs were tested to detect dogs infected before and after the sandfly risk season in Madrid area. Each dog was subjected to the same protocol of blood sample collection and clinical examination to collect epidemiological data and clinical signs. Anti-Leishmania-specific IgG was determined by IFAT cut-off ≥ 1:100.

Results: Overall seroprevalence was 6.1% (198 positive dogs). Epidemiological data indicate a significantly higher seroprevalence in dogs > 4 years old, purebred dogs (Pit Bull and related breeds), and medium to large size dogs. There were no seroprevalence differences according to sex and/or season (April and November). In addition, no significant differences were observed according to whether dogs lived inside or outside the HL outbreak area. Remarkably, of 198 dogs testing positive for L. infantum, 64.6% had no clinical signs, indicating a high proportion of clinically healthy infected dogs that could be a potential source of infection.

Conclusions: Results indicate a stable seroprevalence of L. infantum infection after 2006 in stray dogs in Madrid but with a recent slightly increasing trend. These observations support the need to continue with the LeishSP implemented by sanitary authorities of the Madrid Community as an early warning strategy for human and animal leishmaniosis and to enable continued assessment of the epidemiological role of dogs with subclinical infection in this important zoonotic disease.

Keywords: Canine leishmaniosis; Leishmania infantum; Outbreak of human leishmaniosis; Risk factors; Seroprevalence; Stray dogs; Zoonosis.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Overall seroprevalence of Leishmania infantum infection from 2007 to 2018
Fig. 2
Fig. 2
Seroprevalence of Leishmania infantum infection in sick and clinically healthy infected dogs
Fig. 3
Fig. 3
Seroprevalence of Leishmania infantum infection inside and outside of the outbreak area

References

    1. Alvar J, Cañavate C, Molina R, Moreno J, Nieto J. Canine leishmaniasis. Adv Parasitol. 2004;57:1–88. doi: 10.1016/S0065-308X(04)57001-X. - DOI - PubMed
    1. Solano-Gallego L, Miró G, Koutinas A, Cardoso L, Pennisi MG, Ferrer L, et al. LeishVet guidelines for the practical management of canine leishmaniosis. Parasit Vectors. 2011;4:86. doi: 10.1186/1756-3305-4-86. - DOI - PMC - PubMed
    1. Koutinas AF, Koutinas CK. Pathologic mechanisms underlying the clinical findings in canine leishmaniasis due to Leishmania infantum/chagasi. Vet Pathol. 2014;51:527–538. doi: 10.1177/0300985814521248. - DOI - PubMed
    1. Maia C, Cristóvão J, Pereira A, Kostalova T, Lestinova T, Sumova P, et al. Monitoring Leishmania infection and exposure to Phlebotomus perniciosus using minimal and non-invasive canine samples. Parasit Vectors. 2020;13:119. doi: 10.1186/s13071-020-3993-7. - DOI - PMC - PubMed
    1. Maurelli MP, Bosco A, Foglia Manzillo V, Vitale F, Giaquinto D, Ciuca L, et al. Clinical, molecular and serological diagnosis of canine leishmaniosis: an integrated approach. Vet Sci. 2020 doi: 10.3390/vetsci7020043. - DOI - PMC - PubMed

Substances