Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 11;11(13):7214-7224.
doi: 10.1039/d0ra08732g. eCollection 2021 Feb 10.

Catalytically active nanosized Pd9Te4 (telluropalladinite) and PdTe (kotulskite) alloys: first precursor-architecture controlled synthesis using palladium complexes of organotellurium compounds as single source precursors

Affiliations

Catalytically active nanosized Pd9Te4 (telluropalladinite) and PdTe (kotulskite) alloys: first precursor-architecture controlled synthesis using palladium complexes of organotellurium compounds as single source precursors

Aayushi Arora et al. RSC Adv. .

Abstract

Several intermetallic binary phases of Pd-Te including Pd3Te2, PdTe, PdTe2, Pd9Te4, Pd3Te, Pd2Te, Pd20Te7, Pd8Te3, Pd7Te2, Pd7Te3, Pd4Te and Pd17Te4 are known, and negligible work (except few studies on PdTe) has been done on exploring applications of such phases and their fabrication at nanoscale. Hence, Pd(ii) complexes Pd(L1)Cl2 and Pd(L2-H)Cl (L1): Ph-Te-CH2-CH2-NH2 and L2: HO-2-C6H4-CH[double bond, length as m-dash]N-CH2CH2-Te-Ph were synthesized. Under similar thermolytic conditions, complex Pd(L1)Cl2 with bidentate coordination mode of ligand provided nanostructures of Pd9Te4 (telluropalladinite) whereas Pd(L2-H)Cl with tridentate coordination mode of ligand yielded PdTe (kotulskite). Bimetallic alloy nanostructures possess high catalytic potential for Suzuki coupling of aryl chlorides, and reduction of 4-nitrophenol. They are also recyclable upto six reaction cycles in Suzuki coupling.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. ORTEP diagram of complex 1 with 50% thermal ellipsoids. Selected bond lengths (Å): Te–Pd: 2.5057(6), Te–Caryl: 2.118(6), Te–Calkyl: 2.149(6), Pd–Cl: 2.3142(16), Pd–Cl; Pd–N: 2.063(5). Selected bond angles (°): Cl–Pd–Te: 88.82(4), Cl–Pd–Cl: 94.42(6), N–Pd–Te: 88.21(13), N–Pd–Cl: 88.54(14).
Fig. 2
Fig. 2. ORTEP diagram of complex 2 with 50% thermal ellipsoids. Selected bond lengths (Å): Te–Pd: 2.5002(4), Te–C: 2.120(4), Pd–Cl: 2.3271(11), Pd–O: 2.007(3), Pd–N: 2.017(4). Selected bond angles (°): Cl–Pd–Te: 86.74(3), O–Pd–Cl: 88.98(9), N–Pd–Te: 90.94(10), N–Pd–O: 93.18(13).
Scheme 1
Scheme 1. Strategy for syntheses and catalytic reactions.
Fig. 3
Fig. 3. TGA curves of (a) complex 1 (b) complex 2.
Fig. 4
Fig. 4. FTIR spectra of (a) Pd9Te4 (b) PdTe nanostructures.
Fig. 5
Fig. 5. PXRD spectra of (a) Pd9Te4 (b) PdTe nanostructures.
Fig. 6
Fig. 6. SEM-EDS spectra of (a) Pd9Te4 (b) PdTe nanostructures.
Fig. 7
Fig. 7. HRTEM images of nanostructures of Pd9Te4 (a and c) and PdTe (b and d).
Fig. 8
Fig. 8. DLS analysis of (a) Pd9Te4 and (b) PdTe nanostructures.
Fig. 9
Fig. 9. XPS spectra of (a) Pd9Te4 and (b) PdTe nanostructures.
Fig. 10
Fig. 10. N2 adsorption–desorption isotherm of Pd9Te4 and PdTe nanostructures.
Fig. 11
Fig. 11. (a) Reduction of 4-nitrophenol (b) plot of ln(Ct/C0) versus time: determination of rate constant.
Fig. 12
Fig. 12. Recyclability plot of catalytic use of Pd9Te4 alloy nanoparticles in the Suzuki coupling of 4-chlorobenzaldehyde and phenylboronic acid.

References

    1. Polavarapu L. Mourdikoudis S. Santos I. P. Juste J. P. CrystEngComm. 2015;17:3727. doi: 10.1039/C5CE00112A. - DOI
    1. Jamwal D. Mehta S. K. ChemistrySelect. 2019;4:1943. doi: 10.1002/slct.201803680. - DOI
    1. Zhitong J. Zhang M. Wang M. Feng C. Wang Z.-S. Acc. Chem. Res. 2017;50:895. doi: 10.1021/acs.accounts.6b00625. - DOI - PubMed
    1. Major J. D. Treharne R. E. Phillips L. J. Durose K. Nature. 2014;511:334. doi: 10.1038/nature13435. - DOI - PubMed
    1. Huang Q. Dang F. Zhu H. Zhao L. He B. Wang Y. Wang J. Mai X. J. J. Power Sources. 2020;451:227738. doi: 10.1016/j.jpowsour.2020.227738. - DOI