Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 16;11(24):14453-14458.
doi: 10.1039/d1ra01980e. eCollection 2021 Apr 15.

Bromotrimethylsilane as a selective reagent for the synthesis of bromohydrins

Affiliations

Bromotrimethylsilane as a selective reagent for the synthesis of bromohydrins

Donatella Giomi et al. RSC Adv. .

Abstract

Bromotrimethylsilane (TMSBr) is a very efficient reagent in the solvent-free conversion of glycerol into bromohydrins, useful intermediates in the production of fine chemicals. As glycerol is a relevant by-product in biodiesel production, TMSBr has been also tested as a mediator in transesterification in acidic conditions, providing FAME from castor oil in good yields, along with bromohydrins from glycerol. Subsequently the glycerol conversion was optimized and depending on the reaction conditions, glycerol can be selectively converted into α-monobromohydrin (1-MBH) or α,γ-dibromohydrin (1,3-DBH) in very good yields.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Sunflower oil and castor oil (ricinolein).
Scheme 1
Scheme 1. Transesterification of castor oil (2) with TMSBr.
Scheme 2
Scheme 2. Role of TMSBr as mediator for transesterification of triglycerides.
Scheme 3
Scheme 3. Side processes involving TMSBr decomposition.
Fig. 2
Fig. 2. (a) Experiments performed at 60 °C (Table 2, entries 2 and 3). (b) Experiments performed at 20 °C (Table 2, entries 5 and 6).
Scheme 4
Scheme 4. Bromination of glycerol with TMSBr.
Scheme 5
Scheme 5. Reaction pathway for bromohydrins formation.

References

    1. da Silva F. P. N. R. dos Santos P. F. da Silva S. R. B. Pereira V. L. P. J. Braz. Chem. Soc. 2020;31:1725.
    2. dos Santos P. F. da Silva S. R. B. da Silva F. P. N. R. da Silva Costa J. Sayuri Inada J. Pereira V. L. P. Green Chem. Lett. Rev. 2019;12:389. doi: 10.1080/17518253.2019.1679265. - DOI
    1. For the synthesis of epibromohydrin, see:

    2. Braun G. Org. Synth. 1936;16:30. doi: 10.15227/orgsyn.016.0030. - DOI
    1. For recent applications of bromohydrins, see also:

    2. Lee S. Seo M. H. J. Nanosci. Nanotechnol. 2017;17:7579. doi: 10.1166/jnn.2017.14768. - DOI
    3. Mojzych M. Bernat Z. Karczmarzyk Z. Matysiak J. Fruzinski A. Molecules. 2020;25:221. doi: 10.3390/molecules25010221. doi: 10.3390/molecules25010221. - DOI - DOI - PMC - PubMed
    4. Zhang Y. Chen G. Wu L. Liu K. Zhong H. Long Z. Tong M. Yang Z. Dai S. Chem. Commun. 2020;56:3309. doi: 10.1039/C9CC09643D. - DOI - PubMed
    1. Braun G. Org. Synth. 1934;14:42. doi: 10.15227/orgsyn.014.0042. - DOI
    2. , and references therein

    1. Bouillaud A. Dargelos M. Borredon M.-E. Aust. J. Chem. 1994;47:2123. doi: 10.1071/CH9942123. - DOI

LinkOut - more resources