Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jan 18;11(6):3539-3546.
doi: 10.1039/d0ra10739e. eCollection 2021 Jan 14.

Visible light-driven Giese reaction with alkyl tosylates catalysed by nucleophilic cobalt

Affiliations

Visible light-driven Giese reaction with alkyl tosylates catalysed by nucleophilic cobalt

Kimihiro Komeyama et al. RSC Adv. .

Abstract

The scope of the Giese reaction is expanded using readily available alkyl tosylates as substrates and nucleophilic cobalt(i) catalysts under visible-light irradiation. The reaction proceeds preferentially with less bulky primary alkyl tosylates. This unique reactivity enables the regio-selective Giese reaction of polyol derivatives.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Examples of alcohol-based Giese reaction.
Fig. 1
Fig. 1. Plots of product yield (%) against reaction time (h) in the cobalt-catalysed Giese reaction of 1a and 2a, ●: under light ON/OFF conditions, ×: in dark.
Fig. 2
Fig. 2. (A) Time-dependent UV-Vis absorption spectra of Me-Cbl in DMF (10−4 mol L−1) under the blue-light irradiation under argon atmosphere. (B) Variation over time of absorbances at 475 and 522 nm.
Scheme 2
Scheme 2. Radical clock experiment using 5-hexenyl tosylate 6 (eqn (1)). Radical trapping reaction with γ-terpinene (eqn (2)). Reductive dimerization of phenyl acrylate (eqn (3)).
Scheme 3
Scheme 3. Plausible reaction mechanism of nucleophilic cobalt-catalysed Giese reaction with alkyl tosylates under the light irradiation.

References

    1. Prier C. K. Rankic D. A. MacMillan D. W. C. Chem. Rev. 2013;113:5322–5363. doi: 10.1021/cr300503r. - DOI - PMC - PubMed
    2. Yan M. Lo J. C. Edwards J. T. Baran P. S. J. Am. Chem. Soc. 2016;138:12692–12714. doi: 10.1021/jacs.6b08856. - DOI - PMC - PubMed
    3. Choi J. Fu G. C. Science. 2017;356:152–160. doi: 10.1126/science.aaf7230. - DOI - PMC - PubMed
    1. Srikanth G. S. C. Castle S. L. Tetrahedron. 2005;61:10377–10441. doi: 10.1016/j.tet.2005.07.077. - DOI
    2. Streuff J. Gansäuer A. Angew. Chem., Int. Ed. 2015;54:14232–14242. doi: 10.1002/anie.201505231. - DOI - PubMed
    3. Lovinger G. J. Morken J. P. Eur. J. Org. Chem. 2020:2362–2368. doi: 10.1002/ejoc.201901600. - DOI - PMC - PubMed
    1. Giese B. González-Gómez J. A. Witzel T. Angew. Chem., Int. Ed. 1984;23:69–70. doi: 10.1002/anie.198400691. - DOI
    1. Ballestri M. Chatgilialoglu C. Clark K. B. Griller D. Giese B. Kopping B. J. Org. Chem. 1991;56:678–683. doi: 10.1021/jo00002a035. - DOI
    1. Scheffold R. Abrecht S. Orlinski R. Ruf H. R. Stamouli P. Tinembart O. Walder L. Weymuth C. Pure Appl. Chem. 1987;59:363–372.
    2. Gong H. Andrews R. S. Zuccarello J. L. Lee S. J. Gagné M. R. Org. Lett. 2009;11:879–882. doi: 10.1021/ol8028737. - DOI - PubMed
    3. Wu X. Hao W. Ye K.-Y. Jiang B. Pombar G. Song Z. Lin S. J. Am. Chem. Soc. 2018;140:14836–14843. doi: 10.1021/jacs.8b08605. - DOI - PMC - PubMed