Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Feb 22;12(10):6248-6254.
doi: 10.1039/d1ra08329e. eCollection 2022 Feb 16.

Functionalized quinolizinium-based fluorescent reagents for modification of cysteine-containing peptides and proteins

Affiliations

Functionalized quinolizinium-based fluorescent reagents for modification of cysteine-containing peptides and proteins

Karen Ka-Yan Kung et al. RSC Adv. .

Abstract

A series of quinolizinium-based fluorescent reagents were prepared by visible light-mediated gold-catalyzed cis-difunctionalization between quinolinium diazonium salts and electron-deficient alkyne-linked phenylethynyl trimethylsilanes. The electron-deficient alkynyl group of the quinolizinium-based fluorescent reagents underwent nucleophilic addition reaction with the sulfhydryl group on cysteine-containing peptides and proteins. The quinolizinium-based fluorescent reagents were found to function as highly selective reagents for the modification of cysteine-containing peptides and proteins with good to excellent conversions (up to 99%). Moreover, the modified BCArg mutants bearing cationic quinolizinium compounds 1b, 1d, 1e and 1h exhibit comparable activity in enzymatic and cytotoxicity assays to the unmodified one.

PubMed Disclaimer

Conflict of interest statement

M.-K. Wong, K. K.-Y. Kung, Q. Yu and W.-Y. O filed a patent on electron-deficient alkyne-containing quinolizinium compounds (CN113402538A).

Figures

Scheme 1
Scheme 1. (a) Selected examples of organic fluorescent dyes commonly used in bioconjugation reactions. (b) Our design of electron-deficient alkyne-containing quinolizinium compounds for cysteine modification.
Fig. 1
Fig. 1. Chemical structures of quinoliziniums 1a–1h.

References

    1. Uoyama H. Goushi K. Shizu K. Nomura H. Adachi C. Nature. 2012;492:234–238. doi: 10.1038/nature11687. - DOI - PubMed
    2. Li X. Gao X. Shi W. Ma H. Chem. Rev. 2014;114:590–659. doi: 10.1021/cr300508p. - DOI - PubMed
    3. Romero N. A. Nicewicz D. A. Chem. Rev. 2016;116:10075–10166. doi: 10.1021/acs.chemrev.6b00057. - DOI - PubMed
    4. Hedley G. J. Ruseckas A. Samuel I. D. W. Chem. Rev. 2017;117:796–837. doi: 10.1021/acs.chemrev.6b00215. - DOI - PMC - PubMed
    5. Sun W. Li M. Fan J. Peng X. Acc. Chem. Res. 2019;52:2818–2831. doi: 10.1021/acs.accounts.9b00340. - DOI - PubMed
    6. Bobo M. V. Kuchta J. J. Vannucci A. K. Org. Biomol. Chem. 2021;19:4816–4834. doi: 10.1039/D1OB00396H. - DOI - PubMed
    7. Vega-Peñaloza A. Mateos J. Companyó X. Escudero-Casao M. Dell'Amico L. Angew. Chem., Int. Ed. 2021;60:1082–1097. doi: 10.1002/anie.202006416. - DOI - PubMed
    1. Loudet A. Burgess K. Chem. Rev. 2007;107:4891–4932. doi: 10.1021/cr078381n. - DOI - PubMed
    2. Kobayashi H. Ogawa M. Alford R. Choyke P. L. Urano Y. Chem. Rev. 2010;110:2620–2640. doi: 10.1021/cr900263j. - DOI - PMC - PubMed
    3. Dean K. M. Palmer A. E. Nat. Chem. Biol. 2014;10:512–523. doi: 10.1038/nchembio.1556. - DOI - PMC - PubMed
    4. Kim E. Lee Y. Lee S. Park S. B. Acc. Chem. Res. 2015;48:538–547. doi: 10.1021/ar500370v. - DOI - PubMed
    1. Resch-Genger U. Grabolle M. Cavaliere-Jaricot S. Nitschke R. Nann T. Nat. Methods. 2008;5:763–775. doi: 10.1038/nmeth.1248. - DOI - PubMed
    2. Xu W. Zeng Z. Jiang J.-H. Chang Y.-T. Yuan L. Angew. Chem., Int. Ed. 2016;55:13658–13699. doi: 10.1002/anie.201510721. - DOI - PubMed
    3. Xu Z. Xu L. Chem. Commun. 2016;52:1094–1119. doi: 10.1039/C5CC09248E. - DOI - PubMed
    1. Pitre S. P. McTiernan C. D. Scaiano J. C. ACS Omega. 2016;1:66–76. doi: 10.1021/acsomega.6b00058. - DOI - PMC - PubMed
    2. Sucunza D. Cuadro A. M. Alvarez-Builla J. Vaquero J. J. J. Org. Chem. 2016;81:10126–10135. doi: 10.1021/acs.joc.6b01092. - DOI - PubMed
    3. Mariz I. F. A. Pinto S. N. Santiago A. M. Martinho J. M. G. Recio J. Vaquero J. J. Cuadro A. M. Maçôas E. Commun. Chem. 2021;4:142. doi: 10.1038/s42004-021-00581-4. - DOI - PMC - PubMed
    1. Stephanopoulos N. Francis M. B. Nat. Chem. Biol. 2011;7:876–884. doi: 10.1038/nchembio.720. - DOI - PubMed
    2. Spicer C. D. Davis B. G. Nat. Commun. 2014;5:4740. doi: 10.1038/ncomms5740. - DOI - PubMed
    3. Boutureira O. Bernardes G. J. L. Chem. Rev. 2015;115:2174–2195. doi: 10.1021/cr500399p. - DOI - PubMed
    4. Koniev O. Wagner A. Chem. Soc. Rev. 2015;44:5495–5551. doi: 10.1039/C5CS00048C. - DOI - PubMed
    5. Zhang C. Vinogradova E. V. Spokoyny A. M. Buchwald S. L. Pentelute B. L. Angew. Chem., Int. Ed. 2019;58:4810–4839. doi: 10.1002/anie.201806009. - DOI - PMC - PubMed