Development of a liquid chromatography mass spectrometry method for the determination of vitamin K1, menaquinone-4, menaquinone-7 and vitamin K1-2,3 epoxide in serum of individuals without vitamin K supplements
- PMID: 35427444
- DOI: 10.1515/cclm-2022-0192
Development of a liquid chromatography mass spectrometry method for the determination of vitamin K1, menaquinone-4, menaquinone-7 and vitamin K1-2,3 epoxide in serum of individuals without vitamin K supplements
Abstract
Objectives: Vitamin K and metabolites have a beneficial role in blood coagulation, bone metabolism and growth. However, the determination of vitamin K concentrations in the blood in patients consuming a diet with naturally occurring vitamin K is currently challenging. We aim to develop a cost-effective and rapid method to measure vitamin K metabolites with potential application for clinics and research.
Methods: We developed a simple liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for the determination of vitamin K1, menaquinone-4 (MK-4), menaquinone-7 (MK-7) and vitamin K1-2,3 epoxide in human serum and validated the method in a study cohort of 162 patients tested for carbohydrate malabsorption and in 20 patients with oral phenprocoumon intake.
Results: The overall precision (CVs) ranged between 4.8 and 17.7% in the specified working range (0.06-9.0 nmol/L for all analytes except for MK-7 with 0.04-6.16 nmol/L). In the malabsorption cohort samples, measured values were obtained for all different vitamin K metabolites except for vitamin K1-2,3 epoxide. This metabolite could be detected only in patients with phenprocoumon intake. The good performance of the method is especially achieved by the interaction of three factors: the use of lipase in the sample preparation, the use of an atypical fluorinated reversed phase column, and a logarithmic methanol gradient.
Conclusions: The described method is able to determine the concentration of four vitamin K metabolites in a time-efficient, simple and cost-effective manner. It can be suitable for both routine clinics and research.
Keywords: mass spectrometry; menaquinon-4; menaquinon-7; vitamin K1; vitamin K1-2,3 epoxide.
© 2022 Walter de Gruyter GmbH, Berlin/Boston.
References
-
- Conly, JM, Stein, K. Quantitative and qualitative measurements of K vitamins in human intestinal contents. Am J Gastroenterol 1992;87:311–6.
-
- Shearer, MJ, Okano, T. Key pathways and regulators of vitamin K function and intermediary metabolism. Annu Rev Nutr 2018;38:127–51. https://doi.org/10.1146/annurev-nutr-082117-051741.
-
- Suhara, Y, Kamao, M, Tsugawa, N, Okano, T. Method for the determination of vitamin K homologues in human plasma using high-performance liquid chromatography-tandem mass spectrometry. Anal Chem 2005;77:757–63. https://doi.org/10.1021/ac0489667.
-
- Gentili, A, Cafolla, A, Gasperi, T, Bellante, S, Caretti, F, Curini, R, et al.. Rapid, high performance method for the determination of vitamin K(1), menaquinone-4 and vitamin K(1) 2,3-epoxide in human serum and plasma using liquid chromatography-hybrid quadrupole linear ion trap mass spectrometry. J Chromatogr A 2014;1338:102–10. https://doi.org/10.1016/j.chroma.2014.02.065.
-
- Karl, JP, Fu, X, Dolnikowski, GG, Saltzman, E, Booth, SL. Quantification of phylloquinone and menaquinones in feces, serum, and food by high-performance liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014;963:128–33. https://doi.org/10.1016/j.jchromb.2014.05.056.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources