Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 10:833:155249.
doi: 10.1016/j.scitotenv.2022.155249. Epub 2022 Apr 12.

Identification and occurrence of TBBPA and its debromination and O-methylation transformation products in sediment, fish and whelks from a typical e-waste dismantling site

Affiliations

Identification and occurrence of TBBPA and its debromination and O-methylation transformation products in sediment, fish and whelks from a typical e-waste dismantling site

Yan Yang et al. Sci Total Environ. .

Abstract

Tetrabromobisphenol A (TBBPA) and its debromination (∑BBPA) and O-methylation (∑MeO-TBBPA) products were widely detected in matched sediments, fish, and whelks samples collected from a typical electronic waste (e-waste) dismantling site in Southern China, with concentrations ranging from 19.8 to 1.52 × 104, 8.05 to 1.84 × 103, and 0.08 to 11.9 ng/g dry weight in sediments, and 6.96 to 1.97 × 105, 3.84 to 7.07 × 103, and 3.42 to 472 ng/g lipid in biotas, for TBBPA, ∑BBPA, and ∑MeO-TBBPA, respectively. Significantly higher concentrations of these targets were found in samples collected close to the e-waste site, indicating their potential e-waste sources. Tri-BBPA was the most abundant debromination products in sediments, whereas diMeO-TBBPA was the dominant O-methylation product in biotas. Relatively higher levels of diMeO-TBBPA found in liver and kidneys, suggesting these chemicals might be mainly derived from the in vivo biotransformation. Furthermore, significantly higher biota-sediment accumulation factor values were found for diMeO-TBBPA than these of TBBPA, indicating that O-methylation would increases their accumulation in aquatic organisms. Our study provides insights into the accumulation and biotransformation of TBBPA in aquatic systems. Further studies should pay attention to the occurrence as well as potential health risks of these transformation products.

Keywords: Debromination; Fish; O-methylation; Sediment; TBBPA; Whelk.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.