Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Apr 15;22(1):18.
doi: 10.1186/s40644-022-00456-4.

Application of SPECT and PET / CT with computer-aided diagnosis in bone metastasis of prostate cancer: a review

Affiliations
Review

Application of SPECT and PET / CT with computer-aided diagnosis in bone metastasis of prostate cancer: a review

Zhao Chen et al. Cancer Imaging. .

Abstract

Bone metastasis has a significant influence on the prognosis of prostate cancer(PCa) patients. In this review, we discussed the current application of PCa bone metastasis diagnosis with single-photon emission computed tomography (SPECT) and positron emission tomography/computed tomography (PET/CT) computer-aided diagnosis(CAD) systems. A literature search identified articles concentrated on PCa bone metastasis and PET/CT or SPECT CAD systems using the PubMed database. We summarized the previous studies focused on CAD systems and manual quantitative markers calculation, and the coincidence rate was acceptable. We also analyzed the quantification methods, advantages, and disadvantages of CAD systems. CAD systems can detect abnormal lesions of PCa patients' 99mTc-MDP-SPECT, 18F-FDG-PET/CT, 18F-NaF-PET/CT, and 68 Ga-PSMA PET/CT images automated or semi-automated. CAD systems can also calculate the quantitative markers, which can quantify PCa patients' whole-body bone metastasis tumor burden accurately and quickly and give a standardized and objective result. SPECT and PET/CT CAD systems are potential tools to monitor and quantify bone metastasis lesions of PCa patients simply and accurately, the future clinical application of CAD systems in diagnosing PCa bone metastasis lesions is necessary and feasible.

Keywords: Bone metastasis; Computer-aided diagnosis; PET/CT; Prostate cancer; SPECT.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Similar articles

Cited by

References

    1. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70(3):145–164. doi: 10.3322/caac.21601. - DOI - PubMed
    1. Carlin BI, Andriole GL. The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma. Cancer. 2000;88(12 Suppl):2989–94. 10.1002/1097-0142(20000615)88:12+%3c2989::aid-cncr14%3e3.3.co;2-h. - PubMed
    1. Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev. 2001;27(3):165–176. doi: 10.1053/ctrv.2000.0210. - DOI - PubMed
    1. Sabbatini P, Larson SM, Kremer A, Zhang ZF, Sun M, Yeung H, et al. Prognostic significance of extent of disease in bone in patients with androgen-independent prostate cancer. J Clin Oncol. 1999;17(3):948–957. doi: 10.1200/JCO.1999.17.3.948. - DOI - PubMed
    1. Cheville JC, Tindall D, Boelter C, Jenkins R, Lohse CM, Pankratz VS, et al. Metastatic prostate carcinoma to bone: clinical and pathologic features associated with cancer-specific survival. Cancer. 2002;95(5):1028–1036. doi: 10.1002/cncr.10788. - DOI - PubMed

MeSH terms