Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May:127:102264.
doi: 10.1016/j.artmed.2022.102264. Epub 2022 Mar 2.

FlauBERT vs. CamemBERT: Understanding patient's answers by a French medical chatbot

Affiliations
Free article

FlauBERT vs. CamemBERT: Understanding patient's answers by a French medical chatbot

Corentin Blanc et al. Artif Intell Med. 2022 May.
Free article

Abstract

In a number of circumstances, obtaining health-related information from a patient is time-consuming, whereas a chatbot interacting efficiently with that patient might help saving health care professional time and better assisting the patient. Making a chatbot understand patients' answers uses Natural Language Understanding (NLU) technology that relies on 'intent' and 'slot' predictions. Over the last few years, language models (such as BERT) pre-trained on huge amounts of data achieved state-of-the-art intent and slot predictions by connecting a neural network architecture (e.g., linear, recurrent, long short-term memory, or bidirectional long short-term memory) and fine-tuning all language model and neural network parameters end-to-end. Currently, two language models are specialized in French language: FlauBERT and CamemBERT. This study was designed to find out which combination of language model and neural network architecture was the best for intent and slot prediction by a chatbot from a French corpus of clinical cases. The comparisons showed that FlauBERT performed better than CamemBERT whatever the network architecture used and that complex architectures did not significantly improve performance vs. simple ones whatever the language model. Thus, in the medical field, the results support recommending FlauBERT with a simple linear network architecture.

Keywords: CamemBERT; FlauBERT; Intent and slot prediction; Language models; Natural Language Understanding; Neural network architectures.

PubMed Disclaimer

Publication types

LinkOut - more resources