Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar 8;13(12):3539-3548.
doi: 10.1039/d1sc06422c. eCollection 2022 Mar 24.

Synergistic Brønsted/Lewis acid catalyzed aromatic alkylation with unactivated tertiary alcohols or di- tert-butylperoxide to synthesize quaternary carbon centers

Affiliations

Synergistic Brønsted/Lewis acid catalyzed aromatic alkylation with unactivated tertiary alcohols or di- tert-butylperoxide to synthesize quaternary carbon centers

Aaron Pan et al. Chem Sci. .

Abstract

Dual Brønsted/Lewis acid catalysis involving environmentally benign, readily accessible protic acid and iron promotes site-selective tert-butylation of electron-rich arenes using di-tert-butylperoxide. This transformation inspired the development of a synergistic Brønsted/Lewis acid catalyzed aromatic alkylation that fills a gap in the Friedel-Crafts reaction literature by employing unactivated tertiary alcohols as alkylating agents, leading to new quaternary carbon centers. Corroborated by DFT calculations, the Lewis acid serves a role in enhancing the acidity of the Brønsted acid. The use of non-allylic, non-benzylic, and non-propargylic tertiary alcohols represents an underexplored area in Friedel-Crafts reactivity.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Bioactive molecules bearing all-carbon quaternary carbon centers.
Scheme 1
Scheme 1. Synergistic iron/TFA-catalyzed tert-butylation of phenol using peroxide reagents with and without an acid co-catalyst.
Scheme 2
Scheme 2. Scope of tert-butylation of phenolic, aryl ether, and thiophene derivatives. [a] Reaction conditions: arene 1 (0.2 mmol), DTBP (2, 0.2 mmol), FeCl3 (10 mol%), TFA (0.15 mmol), DCE (0.8 mmol), 50 °C, 2 h. [b] Reaction conditions: arene 1 (0.2 mmol), DTBP (2, 0.2 mmol), FeCl3 (10 mol%), HCl(aq) (0.15 mmol), DCE (0.8 mmol), 50 °C, 2 h. [c] FeCl3 (20 mol%), 18 h. [d] FeCl3 (1 equiv.), HCl(aq) (0.15 mmol), 48 h. [e] 2-tert-Butyl-5-fluorophenol isolated in 5% yield.
Scheme 3
Scheme 3. Proposed pathways for the decomposition of DTBP (2). (a) Fe(iii) initiated pathway. (b) Fe(ii) initiated pathway.
Fig. 2
Fig. 2. Plots of initial rates with respect to (a) [3-tert-butylphenol 1f] indicating approximate first-order dependence, [DTBP 2] = 0.13 M, [FeCl3] = 0.012 M, [TFA] = 0.094 M; (b) [DTBP 2]0.5 indicating half-order dependence [1f], = 0.12 M, [FeCl3] 0.012 M, [TFA] = 0.094 M; (c) [TFA] suggestive of zero-order dependence [1f], = 0.12 M, [DTBP 2] = 0.13 M, [FeCl3] = 0.012 M; (d) [FeCl3]2 indicating second-order dependence [1f], = 0.12 M, [DTBP] = 0.13 M, [TFA] = 0.094 M. Each data point was measured in triplicate.
Scheme 4
Scheme 4. Scope of dual Brønsted/Lewis acid catalyzed, C(sp2)–C(sp3) coupling between phenolic and tertiary alcohol derivatives. [a] 2 equiv. 11a, 48 h.
Fig. 3
Fig. 3. Plots of the normalized time scale method for determining catalyst order; blue = 0.0062 M FeCl3, orange = 0.0094 M FeCl3, grey = 0.013 M FeCl3.
Scheme 5
Scheme 5. Scope of dual Brønsted/Lewis acid-catalyzed, C(sp2)–C(sp3) coupling of arene and tertiary alcohol derivatives. [a] 10 mol% HBr. [b] 75 mol% HCl. [c] Isolated as a 2.6 : 1 mixture of product/starting material.
Fig. 4
Fig. 4. (a) Late-stage tert-alkylation of natural products. Conditions: FeCl3 (5 mol%), tert-alcohol (1.1 equiv.), HCl (75 mol%), PhCl, 100 °C. (b) tert-Alkylation of indoles. Conditions: FeBr3 (5 mol%), tert-butanol (1 equiv.), HBr (15 mol%), DCE, 50 °C. [a] Isolated together with 14% N-methyl-3,5-di-tert-butylindole (see ESI†).
Scheme 6
Scheme 6. (a) Fate of the alcohol. (b) Probing for a radical vs. polar pathway.
Fig. 5
Fig. 5. Free energy profile computed using DFT calculations for the course of ionization of t-BuOH in the presence of the FeCl3/HCl acid pair and FeCl3.

Similar articles

Cited by

References

    1. Lovering F. Bikker J. Humblet C. J. Med. Chem. 2009;52:6752–6756. doi: 10.1021/jm901241e. - DOI - PubMed
    2. Ritchie T. J. Macdonald S. J. F. Drug Discovery Today. 2009;14:1011–1020. doi: 10.1016/j.drudis.2009.07.014. - DOI - PubMed
    1. Méndez-Lucio O. Medina-Franco J. L. Drug Discovery Today. 2017;22:120–126. doi: 10.1016/j.drudis.2016.08.009. - DOI - PubMed
    2. Dombrowski A. W. Gesmundo N. J. Aguirre A. L. Sarris K. A. Young J. M. Bogdan A. R. Martin M. C. Gedeon S. Wang Y. ACS Med. Chem. Lett. 2020;11:597–604. doi: 10.1021/acsmedchemlett.0c00093. - DOI - PMC - PubMed
    1. Long R. Huang J. Gong J. Yang Z. Nat. Prod. Rep. 2015;32:1584–1601. doi: 10.1039/C5NP00046G. - DOI - PubMed
    2. Ling T. Rivas F. Tetrahedron. 2016;72:6729–6777. doi: 10.1016/j.tet.2016.09.002. - DOI
    3. Talele T. T. J. Med. Chem. 2020;63:13291–13315. doi: 10.1021/acs.jmedchem.0c00829. - DOI - PubMed
    4. Zhang C. Li F. Yu Y. Huang A. He P. Lei M. Wang J. Huang L. Liu Z. Liu J. Wei Y. J. Med. Chem. 2017;60:3618–3625. doi: 10.1021/acs.jmedchem.7b00253. - DOI - PubMed
    1. For selected reviews, see:

    2. Douglas C. J. Overman L. E. Proc. Natl. Acad. Sci. U. S. A. 2004;101:5363–5367. doi: 10.1073/pnas.0307113101. - DOI - PMC - PubMed
    3. Quasdorf K. W. Overman L. E. Nature. 2014;516:181–191. doi: 10.1038/nature14007. - DOI - PMC - PubMed
    4. Das J. P. Marek I. Chem. Commun. 2011;47:4593–4623. doi: 10.1039/C0CC05222A. - DOI - PubMed
    1. Lohre C. Dröge T. Wang C. Glorius F. Chem.–Eur. J. 2011;17:6052–6055. doi: 10.1002/chem.201100909. - DOI - PubMed
    2. Joshi-Pangu A. Wang C.-Y. Biscoe M. R. J. Am. Chem. Soc. 2011;133:8478–8481. doi: 10.1021/ja202769t. - DOI - PMC - PubMed