Oxindole synthesis via polar-radical crossover of ketene-derived amide enolates in a formal [3 + 2] cycloaddition
- PMID: 35432887
- PMCID: PMC8966637
- DOI: 10.1039/d1sc07134c
Oxindole synthesis via polar-radical crossover of ketene-derived amide enolates in a formal [3 + 2] cycloaddition
Abstract
Herein we introduce a simple, efficient and transition-metal free method for the preparation of valuable and sterically hindered 3,3-disubstituted oxindoles via polar-radical crossover of ketene derived amide enolates. Various easily accessible N-alkyl and N-arylanilines are added to disubstituted ketenes and the resulting amide enolates undergo upon single electron transfer oxidation a homolytic aromatic substitution (HAS) to provide 3,3-disubstituted oxindoles in good to excellent yields. A variety of substituted anilines and a 3-amino pyridine engage in this oxidative formal [3 + 2] cycloaddition and cyclic ketenes provide spirooxindoles. Both substrates and reagents are readily available and tolerance to functional groups is broad.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures





Similar articles
-
1,4-Aryl migration in ketene-derived enolates by a polar-radical-crossover cascade.Nat Commun. 2022 Jun 2;13(1):3083. doi: 10.1038/s41467-022-30817-3. Nat Commun. 2022. PMID: 35655065 Free PMC article.
-
Development of Synthetic Methodologies via Catalytic Enantioselective Synthesis of 3,3-Disubstituted Oxindoles.Acc Chem Res. 2018 Jun 19;51(6):1443-1454. doi: 10.1021/acs.accounts.8b00097. Epub 2018 May 29. Acc Chem Res. 2018. PMID: 29808678
-
Copper(ii) chloride mediated (aza)oxindole synthesis by oxidative coupling of Csp(2)-H and Csp(3)-H centers: substrate scope and DFT study.Org Biomol Chem. 2013 Oct 21;11(39):6734-43. doi: 10.1039/c3ob41254g. Epub 2013 Aug 29. Org Biomol Chem. 2013. PMID: 23989389
-
[Development of new synthetic method and function of ynolate anions].Yakugaku Zasshi. 2000 Dec;120(12):1233-46. doi: 10.1248/yakushi1947.120.12_1233. Yakugaku Zasshi. 2000. PMID: 11193376 Review. Japanese.
-
Literature Survey and Further Studies on the 3-Alkylation of N-Unprotected 3-Monosubstituted Oxindoles. Practical Synthesis of N-Unprotected 3,3-Disubstituted Oxindoles and Subsequent Transformations on the Aromatic Ring.Molecules. 2016 Dec 26;22(1):24. doi: 10.3390/molecules22010024. Molecules. 2016. PMID: 28035962 Free PMC article. Review.
Cited by
-
Novel quinoxaline derivatives as dual EGFR and COX-2 inhibitors: synthesis, molecular docking and biological evaluation as potential anticancer and anti-inflammatory agents.RSC Adv. 2022 Sep 5;12(39):25204-25216. doi: 10.1039/d2ra04498f. eCollection 2022 Sep 5. RSC Adv. 2022. PMID: 36199335 Free PMC article.
-
Practical, scalable, and transition metal-free visible light-induced heteroarylation route to substituted oxindoles.Chem Sci. 2023 Jan 3;14(4):897-902. doi: 10.1039/d2sc05918e. eCollection 2023 Jan 25. Chem Sci. 2023. PMID: 36755706 Free PMC article.
References
-
-
For selected reviews see:
- Dreifuss A. A. Bastos-Pereira A. L. Avila T. V. Da Soley B. Rivero A. J. Aguilar J. L. Acco A. J. Ethnopharmacology. 2010;130:127. doi: 10.1016/j.jep.2010.04.029. - DOI - PubMed
- Kaur M. Chadha N. Silakari O. Eur. J. Med. Chem. 2016;123:858. doi: 10.1016/j.ejmech.2016.08.011. - DOI - PubMed
- Khetmalis Y. M. Shivani M. Murugesan S. Chandra Sekhar K. V. G. Biomed. Pharmacother. 2021;141:111842. doi: 10.1016/j.biopha.2021.111842. - DOI - PubMed
-
-
-
For selected natural products see:
- Anderton N. Cockrum P. A. Colegate S. M. Edgar J. A. Flower K. Vit I. Willing R. I. Phytochemistry. 1998;48:437. doi: 10.1016/S0031-9422(97)00946-1. - DOI
- Jossang A. Jossang P. Hadi H. A. Sevent T. Bodo B. J. Org. Chem. 1991;56:6527. doi: 10.1021/jo00023a016. - DOI
- Shi J.-S. Yu J.-X. Chen X.-P. Xu R.-X. Acta Pharmacol. Sin. 2003;24:97–101. - PubMed
-
-
- Baeyer A. Knop C. A. Ann. Chem. Pharm. 1866;140:1. doi: 10.1002/jlac.18661400102. - DOI
-
-
For recent examples see:
- Zhang Y.-C. Jiang F. Shi F. Acc. Chem. Res. 2019;53:425. doi: 10.1021/acs.accounts.9b00549. - DOI - PubMed
- Basnet P. Sebold M. B. Hendrick C. E. Kozlowski M. C. Org. Lett. 2020;22:9524. doi: 10.1021/acs.orglett.0c03581. - DOI - PMC - PubMed
- Li G. Liu M. Zou S. Feng X. Lin L. Org. Lett. 2020;22:8708. doi: 10.1021/acs.orglett.0c03305. - DOI - PubMed
- Liang K. Li N. Zhang Y. Li T. Xia C. Chem. Sci. 2019;10:3049. doi: 10.1039/C8SC05170D. - DOI - PMC - PubMed
- Tetsuya S. Diachi H. Masaki T. Hidemi Y. Eur. J. Org. Chem. 2019;15:1813.
-
LinkOut - more resources
Full Text Sources