Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar 9;13(13):3875-3879.
doi: 10.1039/d1sc07134c. eCollection 2022 Mar 30.

Oxindole synthesis via polar-radical crossover of ketene-derived amide enolates in a formal [3 + 2] cycloaddition

Affiliations

Oxindole synthesis via polar-radical crossover of ketene-derived amide enolates in a formal [3 + 2] cycloaddition

Niklas Radhoff et al. Chem Sci. .

Abstract

Herein we introduce a simple, efficient and transition-metal free method for the preparation of valuable and sterically hindered 3,3-disubstituted oxindoles via polar-radical crossover of ketene derived amide enolates. Various easily accessible N-alkyl and N-arylanilines are added to disubstituted ketenes and the resulting amide enolates undergo upon single electron transfer oxidation a homolytic aromatic substitution (HAS) to provide 3,3-disubstituted oxindoles in good to excellent yields. A variety of substituted anilines and a 3-amino pyridine engage in this oxidative formal [3 + 2] cycloaddition and cyclic ketenes provide spirooxindoles. Both substrates and reagents are readily available and tolerance to functional groups is broad.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Selected strategies for the synthesis of oxindoles.
Scheme 2
Scheme 2. Substrate scope – variation of substituents at the nitrogen. Reactions (0.20 mmol) were conducted under argon atmosphere. a For step 1 and 2 reaction time was 1 h.
Scheme 3
Scheme 3. Substrate Scope – variation of anilines and ketenes. Reactions (0.20 mmol) were conducted under argon atmosphere. a Isolated as an inseparable mixture (1 : 1.4) with the protonated enolate 4fa (56% combined yield).
Scheme 4
Scheme 4. Suggested mechanism.
Scheme 5
Scheme 5. Mechanistic experiments. (a) (1) EtMgBr (1.1 equiv.), rt, 30 min, (2) 2a (1.5 equiv.), −78 °C, 30 min, (3) I2 (1.2 equiv.), −78 °C, 15 min in THF (0.01 M). (b) Warm to room temperature in THF (0.01 M), 18 h. (c) NaI (1.2 equiv.) in acetone (0.77 M), rt, 18 h. (d) Irradiation with blue LED (40 W, 467 nm) in THF (0.01 M), rt, 8 h.

Similar articles

Cited by

References

    1. For selected reviews see:

    2. Dreifuss A. A. Bastos-Pereira A. L. Avila T. V. Da Soley B. Rivero A. J. Aguilar J. L. Acco A. J. Ethnopharmacology. 2010;130:127. doi: 10.1016/j.jep.2010.04.029. - DOI - PubMed
    3. Kaur M. Chadha N. Silakari O. Eur. J. Med. Chem. 2016;123:858. doi: 10.1016/j.ejmech.2016.08.011. - DOI - PubMed
    4. Khetmalis Y. M. Shivani M. Murugesan S. Chandra Sekhar K. V. G. Biomed. Pharmacother. 2021;141:111842. doi: 10.1016/j.biopha.2021.111842. - DOI - PubMed
    1. For selected natural products see:

    2. Anderton N. Cockrum P. A. Colegate S. M. Edgar J. A. Flower K. Vit I. Willing R. I. Phytochemistry. 1998;48:437. doi: 10.1016/S0031-9422(97)00946-1. - DOI
    3. Jossang A. Jossang P. Hadi H. A. Sevent T. Bodo B. J. Org. Chem. 1991;56:6527. doi: 10.1021/jo00023a016. - DOI
    4. Shi J.-S. Yu J.-X. Chen X.-P. Xu R.-X. Acta Pharmacol. Sin. 2003;24:97–101. - PubMed
    1. Baeyer A. Knop C. A. Ann. Chem. Pharm. 1866;140:1. doi: 10.1002/jlac.18661400102. - DOI
    1. For recent examples see:

    2. Zhang Y.-C. Jiang F. Shi F. Acc. Chem. Res. 2019;53:425. doi: 10.1021/acs.accounts.9b00549. - DOI - PubMed
    3. Basnet P. Sebold M. B. Hendrick C. E. Kozlowski M. C. Org. Lett. 2020;22:9524. doi: 10.1021/acs.orglett.0c03581. - DOI - PMC - PubMed
    4. Li G. Liu M. Zou S. Feng X. Lin L. Org. Lett. 2020;22:8708. doi: 10.1021/acs.orglett.0c03305. - DOI - PubMed
    5. Liang K. Li N. Zhang Y. Li T. Xia C. Chem. Sci. 2019;10:3049. doi: 10.1039/C8SC05170D. - DOI - PMC - PubMed
    6. Tetsuya S. Diachi H. Masaki T. Hidemi Y. Eur. J. Org. Chem. 2019;15:1813.
    1. Marchese A. D. Larin E. M. Mirabi B. Lautens M. Acc. Chem. Res. 2020;53:1605. doi: 10.1021/acs.accounts.0c00297. - DOI - PubMed