Acceptorless dehydrogenative synthesis of primary amides from alcohols and ammonia
- PMID: 35432908
- PMCID: PMC8966752
- DOI: 10.1039/d1sc07102e
Acceptorless dehydrogenative synthesis of primary amides from alcohols and ammonia
Abstract
The highly desirable synthesis of the widely-used primary amides directly from alcohols and ammonia via acceptorless dehydrogenative coupling represents a clean, atom-economical, sustainable process. Nevertheless, such a reaction has not been previously reported, and the existing catalytic systems instead generate other N-containing products, e.g., amines, imines and nitriles. Herein, we demonstrate an efficient and selective ruthenium-catalyzed synthesis of primary amides from alcohols and ammonia gas, accompanied by H2 liberation. Various aliphatic and aromatic primary amides were synthesized in high yields, with no observable N-containing byproducts. The selectivity of this system toward primary amide formation is rationalized through density functional theory (DFT) calculations, which show that dehydrogenation of the hemiaminal intermediate into primary amide is energetically favored over its dehydration into imine.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures






Similar articles
-
Metal-ligand cooperation by aromatization-dearomatization: a new paradigm in bond activation and "green" catalysis.Acc Chem Res. 2011 Aug 16;44(8):588-602. doi: 10.1021/ar2000265. Epub 2011 Jul 8. Acc Chem Res. 2011. PMID: 21739968
-
Catalytic acceptorless dehydrogenations: Ru-Macho catalyzed construction of amides and imines.Tetrahedron. 2014 Jul 8;70(27-28):4213-4218. doi: 10.1016/j.tet.2014.03.085. Tetrahedron. 2014. PMID: 26124536 Free PMC article.
-
Ruthenium-Catalyzed Synthesis of 2-Pyrazolines via Acceptorless Dehydrogenative Coupling of Allylic Alcohols with Hydrazines.Org Lett. 2024 Nov 1;26(43):9340-9345. doi: 10.1021/acs.orglett.4c03525. Epub 2024 Oct 21. Org Lett. 2024. PMID: 39432013
-
Tandem transformations and multicomponent reactions utilizing alcohols following dehydrogenation strategy.Org Biomol Chem. 2020 Mar 25;18(12):2193-2214. doi: 10.1039/c9ob02760b. Org Biomol Chem. 2020. PMID: 32134063 Review.
-
First-Row Transition-Metal Catalyzed Acceptorless Dehydrogenation and Related Reactions: A Personal Account.Chem Rec. 2021 Dec;21(12):3839-3871. doi: 10.1002/tcr.202100165. Epub 2021 Aug 20. Chem Rec. 2021. PMID: 34415674 Review.
Cited by
-
Progress in C-C and C-Heteroatom Bonds Construction Using Alcohols as Acyl Precursors.Molecules. 2022 Dec 16;27(24):8977. doi: 10.3390/molecules27248977. Molecules. 2022. PMID: 36558110 Free PMC article. Review.
-
Mechanochemistry-Driven Borrowing Hydrogen Processes for Ru-Catalyzed N-Alkylation: A Pathway to Enhanced Sustainability and Efficiency.Angew Chem Int Ed Engl. 2025 Aug 4;64(32):e202508050. doi: 10.1002/anie.202508050. Epub 2025 Jun 23. Angew Chem Int Ed Engl. 2025. PMID: 40454601 Free PMC article.
References
-
- Roundhill D. M. Chem. Rev. 1992;92:1–27. doi: 10.1021/cr00009a001. - DOI
- McCullough K. J., in Encyclopedia of Reagents for Organic Synthesis, ed. L. A. Paquette, Wiley: Chichester, U.K., 2001, ch. Ammonia
- Klinkenberg J. L. Hartwig J. F. Angew. Chem., Int. Ed. 2011;50:86–95. doi: 10.1002/anie.201002354. - DOI - PMC - PubMed
- Kim i. Kim H. J. Chang S. Eur. J. Org. Chem. 2013:3201–3213. doi: 10.1002/ejoc.201300164. - DOI
-
- Gunanathan C. Milstein D. Angew. Chem., Int. Ed. 2008;47:8661–8664. doi: 10.1002/anie.200803229. - DOI - PubMed
- Pingen D. Müller C. Vogt D. Angew. Chem., Int. Ed. 2010;49:8130–8133. doi: 10.1002/anie.201002583. - DOI - PubMed
- Ye X. Plessow P. N. Brinks M. K. Schelwies M. Schaub T. Rominger F. Paciello R. Limbach M. Hofmann P. J. Am. Chem. Soc. 2014;136:5923–5929. doi: 10.1021/ja409368a. - DOI - PubMed
- Balaraman E. Srimani D. Diskin-Posner Y. Milstein D. Catal. Lett. 2015;145:139–144. doi: 10.1007/s10562-014-1422-2. - DOI
- Fujita K.-i. Furukawa S. Morishima N. Shimizu M. Yamaguchi R. ChemCatChem. 2018;10:1993–1997. doi: 10.1002/cctc.201702037. - DOI
- Daw P. Ben-David Y. Milstein D. J. Am. Chem. Soc. 2018;140:11931–11934. doi: 10.1021/jacs.8b08385. - DOI - PMC - PubMed
- Daw P. Kumar A. Espinosa-Jalapa N. A. Ben-David Y. Milstein D. J. Am. Chem. Soc. 2019;141:12202–12206. doi: 10.1021/jacs.9b05261. - DOI - PubMed
- Wang Y. Furukawa S. Zhang Z. Torrente-Murciano L. Khan S. A. Yan N. Catal. Sci. Technol. 2019;9:86–96. doi: 10.1039/C8CY01799A. - DOI
- Wang Y. Furukawa S. Yan N. ACS Catal. 2019;9:6681–6691.
-
- Zhang J. Leitus G. Ben-David Y. Milstein D. J. Am. Chem. Soc. 2005;127:10840–10841. doi: 10.1021/ja052862b. - DOI - PubMed
- Gunanathan C. Ben-David Y. Milstein D. Science. 2007;317:790–792. doi: 10.1126/science.1145295. - DOI - PubMed
- Gnanaprakasam B. Zhang J. Milstein D. Angew. Chem., Int. Ed. 2010;49:1468–1471. doi: 10.1002/anie.200907018. - DOI - PubMed
- Balaraman E. Khaskin E. Leitus G. Milstein D. Nat. Chem. 2013;5:122–125. doi: 10.1038/nchem.1536. - DOI - PubMed
- Crabtree R. H. Chem. Rev. 2017;117:9228–9246. doi: 10.1021/acs.chemrev.6b00556. - DOI - PubMed
- Espinosa-Jalapa N. A. Kumar A. Leitus G. Diskin-Posner Y. Milstein D. J. Am. Chem. Soc. 2017;139:11722–11725. doi: 10.1021/jacs.7b08341. - DOI - PubMed
- Luo J. Rauch M. Avram L. Diskin-Posner Y. Shmul G. Ben-David Y. Milstein D. Nat. Catal. 2020;3:887–892. doi: 10.1038/s41929-020-00514-9. - DOI
-
- Zeng H. Guan Z. J. Am. Chem. Soc. 2011;133:1159–1161. doi: 10.1021/ja106958s. - DOI - PMC - PubMed
- Prechtl M. H. G. Wobser K. Theyssen N. Ben-David Y. Milstein D. Leitner W. Catal. Sci. Technol. 2012;2:2039–2042. doi: 10.1039/C2CY20429K. - DOI
- Srimani D. Balaraman E. Hu P. Ben-David Y. Milstein D. Adv. Synth. Catal. 2013;355:2525–2530. doi: 10.1002/adsc.201300620. - DOI
- Spasyuk D. Vicent C. Gusev D. G. J. Am. Chem. Soc. 2015;137:3743–3746. doi: 10.1021/ja512389y. - DOI - PubMed
- Zou Y.-Q. Zhou Q.-Q. Diskin-Posner Y. Ben-David Y. Milstein D. Chem. Sci. 2020;11:7188–7193. doi: 10.1039/D0SC02065F. - DOI - PMC - PubMed
- Kar S. Xie Y. Zhou Q.-Q. Diskin-Posner Y. Ben-David Y. Milstein D. ACS Catal. 2021;11:7383–7393. doi: 10.1021/acscatal.1c00728. - DOI - PMC - PubMed
-
- The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Material Science, ed. A. Greenberg, C. M. Breneman and J. F. Liebman, Wiley, New York, 2000
- Humphrey J. M. Chamberlin A. R. Chem. Rev. 1997;97:2243–2266. doi: 10.1021/cr950005s. - DOI - PubMed
- Bray B. L. Nat. Rev. Drug Discovery. 2003;2:587–593. doi: 10.1038/nrd1133. - DOI - PubMed
- Dineen T. A. Zajac M. A. Myers A. G. J. Am. Chem. Soc. 2006;128:16406–16409. doi: 10.1021/ja066728i. - DOI - PubMed
- Pattabiraman V. R. Bode J. W. Nature. 2011;480:471–479. doi: 10.1038/nature10702. - DOI - PubMed
- Szostak M. Spain M. Eberhart A. J. Procter D. J. J. Am. Chem. Soc. 2014;136:2268–2271. doi: 10.1021/ja412578t. - DOI - PMC - PubMed
- Ganesan M. Nagaraaj P. Org. Chem. Front. 2020;7:3792–3814. doi: 10.1039/D0QO00843E. - DOI
- Thakur R. Jaiswal Y. Kumar A. Tetrahedron. 2021;93:132313. doi: 10.1016/j.tet.2021.132313. - DOI