Average gut flora in healthy Japanese subjects stratified by age and body mass index
- PMID: 35433164
- PMCID: PMC8970655
- DOI: 10.12938/bmfh.2021-056
Average gut flora in healthy Japanese subjects stratified by age and body mass index
Abstract
Imbalance of the gut microbiota plays an important role in the pathogenesis of various diseases. Although many clinical studies have analyzed the gut microbiota, the definition of normal gut microbiota remains unclear. In this study, we aim to establish the average gut microbiota in the healthy Japanese population. Using 16S ribosomal RNA gene sequencing, we analyzed gut microbial data from fecal samples obtained from 6,101 healthy Japanese individuals. Based on their ages, the individuals were divided into three groups: young, middle-age, and old. Individuals were further categorized according to body mass index (BMI) into lean, normal, and obese groups. The α and β diversities in the old group were significantly higher than those in the young and middle-age groups. The Firmicutes/Bacteroidetes ratio of subjects in the obese category was significantly lower compared with those of subjects in the lean and normal categories in the young and middle-age groups. Genus Bacteroides was the dominant gut microbiota across all the BMI categories in all the age groups. Among the top ten genera, the abundances of Bacteroides, Bifidobacterium, Anaerostipes, Blautia, Dorea, Fusicatenibacter, Lachnoclostridium, and Parabacteroides were significantly lower in the old group than in the young and middle-age groups. The correlation network at the genus level revealed different microbe-microbe interactions associated with age and BMI. We determined the average Japanese gut microbiota, and this information could be used as a reference. The gut microbiota greatly differs based on the life stage and metabolic status of the host, and this gives rise to a variety of host-gut microbe interactions that can lead to an increased susceptibility to disease.
Keywords: 16S rRNA; Japanese population; gut microbiota; large cohort.
©2022 BMFH Press.
Figures




References
-
- Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T, Miyauchi S, Shioi G, Inoue H, Tsujimoto G. 2013. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4: 1829. - PMC - PubMed
-
- Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, Forslund K, Hildebrand F, Prifti E, Falony G, Le Chatelier E, Levenez F, Doré J, Mattila I, Plichta DR, Pöhö P, Hellgren LI, Arumugam M, Sunagawa S, Vieira-Silva S, Jørgensen T, Holm JB, Trošt K, Kristiansen K, Brix S, Raes J, Wang J, Hansen T, Bork P, Brunak S, Oresic M, Ehrlich SD, Pedersen O, MetaHIT Consortium2016. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535: 376–381. - PubMed
-
- Yachida S, Mizutani S, Shiroma H, Shiba S, Nakajima T, Sakamoto T, Watanabe H, Masuda K, Nishimoto Y, Kubo M, Hosoda F, Rokutan H, Matsumoto M, Takamaru H, Yamada M, Matsuda T, Iwasaki M, Yamaji T, Yachida T, Soga T, Kurokawa K, Toyoda A, Ogura Y, Hayashi T, Hatakeyama M, Nakagama H, Saito Y, Fukuda S, Shibata T, Yamada T. 2019. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med 25: 968–976. - PubMed