Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May 20;11(5):1845-1855.
doi: 10.1021/acssynbio.2c00013. Epub 2022 Apr 20.

Engineering Antisense Oligonucleotides as Antibacterial Agents That Target FMN Riboswitches and Inhibit the Growth of Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli

Affiliations

Engineering Antisense Oligonucleotides as Antibacterial Agents That Target FMN Riboswitches and Inhibit the Growth of Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli

Martina Traykovska et al. ACS Synth Biol. .

Abstract

In the past several decades, antibiotic drug resistance has emerged as a significant challenge in modern medicine due to the rise of many bacterial pathogenic strains resistant to all known antibiotics. At the same time, riboswitches have emerged as novel targets for antibacterial drug discovery. Here for the first time, we describe the design and applications of antisense oligonucleotides as antibacterial agents that target a riboswitch. The antisense oligonucleotides are covalently coupled with two different cell-penetrating peptides, penetrating Gram-positive and Gram-negative bacterial cells. We specifically target Flavin MonoNucleotide (FMN) riboswitches in Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli that control both synthesis and import of FMN precursors. We have established an average antibiotic dosage by antisense oligonucleotides that inhibit 80% of bacterial growth at 700 nM (4.5 μg/mL). Furthermore, the antisense oligonucleotides do not exhibit toxicity in human cell lines at this concentration. The results demonstrate that riboswitches are suitable targets in antisense technology for antibacterial drug development.

Keywords: Gram-negative bacteria; Gram-positive bacteria; antibacterial agents; antibacterial drug discovery; antibacterial resistance; antisense oligonucleotides; cell-penetrating peptides; drug target; flavin riboswitch.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources