Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Nov;29(11):1550-1557.
doi: 10.1038/s41417-022-00455-4. Epub 2022 Apr 19.

3JC48-3 (methyl 4'-methyl-5-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)-[1,1'-biphenyl]-3-carboxylate): a novel MYC/MAX dimerization inhibitor reduces prostate cancer growth

Affiliations

3JC48-3 (methyl 4'-methyl-5-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)-[1,1'-biphenyl]-3-carboxylate): a novel MYC/MAX dimerization inhibitor reduces prostate cancer growth

Sanjeev Shukla et al. Cancer Gene Ther. 2022 Nov.

Abstract

The proto-oncogene cellular myelocytomatosis (c-Myc) is a transcription factor that is upregulated in several human cancers. Therapeutic targeting of c-Myc remains a challenge because of a disordered protein tertiary structure. The basic helical structure and zipper protein of c-Myc forms an obligate heterodimer with its partner MYC-associated factor X (MAX) to function as a transcription factor. An attractive strategy is to inhibit MYC/MAX dimerization to decrease c-Myc transcriptional function. Several methods have been described to inhibit MYC/MAX dimerization including small molecular inhibitors and proteomimetics. We studied the effect of a second-generation small molecular inhibitor 3JC48-3 on prostate cancer growth and viability. In our experimental studies, we found 3JC48-3 decreases prostate cancer cells' growth and viability in a dose-dependent fashion in vitro. We confirmed inhibition of MYC/MAX dimerization by 3JC48-3 using immunoprecipitation experiments. We have previously shown that the MYC/MAX heterodimer is a transcriptional repressor of a novel kinase protein kinase D1 (PrKD1). Treatment with 3JC48-3 upregulated PrKD1 expression and phosphorylation of known PrKD1 substrates: the threonine 120 (Thr-120) residue in beta-catenin and the serine 216 (Ser-216) in Cell Division Cycle 25 (CDC25C). The mining of gene expression in human metastatic prostate cancer samples demonstrated an inverse correlation between PrKD1 and c-Myc expression. Normal mice and mice with patient-derived prostate cancer xenografts (PDX) tolerated intraperitoneal injections of 3JC48-3 up to 100 mg/kg body weight without dose-limiting toxicity. Preliminary results in these PDX mouse models suggest that 3JC48-3 may be effective in decreasing the rate of tumor growth. In conclusion, our study demonstrates that 3JC48-3 is a potent MYC/MAX heterodimerization inhibitor that decreases prostate cancer growth and viability associated with upregulation of PrKD1 expression and kinase activity.

PubMed Disclaimer

References

    1. Zeng W, Sun H, Meng F, Liu Z, Xiong J, Zhou S, et al. Nuclear C-MYC expression level is associated with disease progression and potentially predictive of two year overall survival in prostate cancer. Int J Clin Exp Pathol. 2015;8:1878–88. - PubMed - PMC
    1. Yu C, Niu X, Jin F, Liu Z, Jin C, Lai L. Structure-based Inhibitor Design for the Intrinsically Disordered Protein c-Myc. Sci Rep. 2016;6:22298. - DOI - PubMed - PMC
    1. Grandori C, Cowley SM, James LP, Eisenman RN. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol. 2000;16:653–99. - DOI - PubMed
    1. Singh SS, Jois SD. Homo- and heterodimerization of proteins in cell signaling: inhibition and drug design. Adv Protein Chem Struct Biol. 2018;111:1–59. - DOI - PubMed
    1. Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther. 2021;6:201. - DOI - PubMed - PMC

Publication types

LinkOut - more resources