Mycobacterium tuberculosis Lineages Associated with Mutations and Drug Resistance in Isolates from India
- PMID: 35442078
- PMCID: PMC9241780
- DOI: 10.1128/spectrum.01594-21
Mycobacterium tuberculosis Lineages Associated with Mutations and Drug Resistance in Isolates from India
Abstract
Current knowledge on resistance-conferring determinants in Mycobacterium tuberculosis is biased toward globally dominant lineages 2 and 4. In contrast, lineages 1 and 3 are predominant in India. In this study, we performed whole-genome sequencing of 498 MDR M. tuberculosis isolates from India to determine the prevalence of drug resistance mutations and to understand the genomic diversity. A retrospective collection of 498 M. tuberculosis isolates submitted to the National Institute for Research in Tuberculosis for phenotypic susceptibility testing between 2014 to 2016 were sequenced. Genotypic resistance prediction was performed using known resistance-conferring determinants. Genotypic and phenotypic results for 12 antituberculosis drugs were compared, and sequence data were explored to characterize lineages and their association with drug resistance. Four lineages were identified although lineage 1 predominated (43%). The sensitivity of prediction for isoniazid and rifampicin was 92% and 98%, respectively. We observed lineage-specific variations in the proportion of isolates with resistance-conferring mutations, with drug resistance more common in lineages 2 and 3. Disputed mutations (codons 430, 435, 445, and 452) in the rpoB gene were more common in isolates other than lineage 2. Phylogenetic analysis and pairwise SNP difference revealed high genetic relatedness of lineage 2 isolates. WGS based resistance prediction has huge potential, but knowledge of regional and national diversity is essential to achieve high accuracy for resistance prediction. IMPORTANCE Current knowledge on resistance-conferring determinants in Mycobacterium tuberculosis is biased toward globally dominant lineages 2 and 4. In contrast, lineages 1 and 3 are predominant in India. We performed whole-genome sequencing of 498 MDR M. tuberculosis isolates from India to determine the prevalence of drug resistance mutations and to understand genomic diversity. Four lineages were identified although lineage 1 predominated (43%). The sensitivity of prediction for isoniazid and rifampicin was 92% and 98%, respectively. We observed lineage-specific variations in the proportion of isolates with resistance-conferring mutations, with drug resistance more common in lineages 2 and 3. Disputed mutations (codons 430, 435, 445, and 452) in the rpoB gene were more common in isolates other than lineage 2. Phylogenetic analysis and pairwise SNP difference revealed high genetic relatedness of lineage 2 isolates. WGS based resistance prediction has huge potential, but knowledge of regional and national diversity is essential to achieve high accuracy for resistance prediction.
Keywords: Mycobacterium tuberculosis; drug resistance; lineage; whole-genome sequencing.
Conflict of interest statement
The authors declare a conflict of interest. J.P. reports personal fees from Next Gen Diagnostics, outside the submitted work. S.J.P. reports receiving funds from Next Gen Diagnostics, outside the submitted work.
Figures
References
-
- World Health Organisation . 2020. Global tuberculosis report 2020. https://www.who.int/publications/i/item/9789240013131.
-
- Central Tuberculosis Division . 2020. India TB report 2019. https://tbcindia.gov.in/WriteReadData/India%20TB%20Report%202019.pdf.
-
- S U, Kumar AMV, Venkateshmurthy NS, Nair D, Kingsbury RRP, Velu M, P S, Gupta J, Ahmed J, G P, Hiremath S, Jaiswal RK, Kokkad RJ, N S. 2021. Implementation of the new integrated algorithm for diagnosis of drug-resistant tuberculosis in Karnataka State, India: how well are we doing? PLoS One 16:e0244785. doi:10.1371/journal.pone.0244785. - DOI - PMC - PubMed
-
- Gardee Y, Dreyer AW, Koornhof HJ, Omar SV, da Silva P, Bhyat Z, Ismail NA. 2017. Evaluation of the genotype MTBDRsl version 2.0 assay for second-line drug resistance detection of Mycobacterium tuberculosis isolates in South Africa. J Clin Microbiol 55:791–800. doi:10.1128/JCM.01865-16. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
