RODAN: a fully convolutional architecture for basecalling nanopore RNA sequencing data
- PMID: 35443610
- PMCID: PMC9020074
- DOI: 10.1186/s12859-022-04686-y
RODAN: a fully convolutional architecture for basecalling nanopore RNA sequencing data
Abstract
Background: Despite recent progress in basecalling of Oxford nanopore DNA sequencing data, its wide adoption is still being hampered by its relatively low accuracy compared to short read technologies. Furthermore, very little of the recent research was focused on basecalling of RNA data, which has different characteristics than its DNA counterpart.
Results: We fill this gap by benchmarking a fully convolutional deep learning basecalling architecture with improved performance compared to Oxford nanopore's RNA basecallers.
Availability: The source code for our basecaller is available at: https://github.com/biodlab/RODAN .
Keywords: Convolutional networks; Long read sequencing; Oxford nanopore; RNA basecalling.
© 2022. The Author(s).
Conflict of interest statement
The authors declare that they have no competing interests.
Figures


Similar articles
-
Accelerated nanopore basecalling with SLOW5 data format.Bioinformatics. 2023 Jun 1;39(6):btad352. doi: 10.1093/bioinformatics/btad352. Bioinformatics. 2023. PMID: 37252813 Free PMC article.
-
Pair consensus decoding improves accuracy of neural network basecallers for nanopore sequencing.Genome Biol. 2021 Jan 19;22(1):38. doi: 10.1186/s13059-020-02255-1. Genome Biol. 2021. PMID: 33468205 Free PMC article.
-
Estimated Nucleotide Reconstruction Quality Symbols of Basecalling Tools for Oxford Nanopore Sequencing.Sensors (Basel). 2023 Jul 29;23(15):6787. doi: 10.3390/s23156787. Sensors (Basel). 2023. PMID: 37571570 Free PMC article.
-
Beyond sequencing: machine learning algorithms extract biology hidden in Nanopore signal data.Trends Genet. 2022 Mar;38(3):246-257. doi: 10.1016/j.tig.2021.09.001. Epub 2021 Oct 25. Trends Genet. 2022. PMID: 34711425 Review.
-
The Current State of Nanopore Sequencing.Methods Mol Biol. 2023;2632:3-14. doi: 10.1007/978-1-0716-2996-3_1. Methods Mol Biol. 2023. PMID: 36781717 Review.
Cited by
-
Artificial intelligence and machine learning in cell-free-DNA-based diagnostics.Genome Res. 2025 Jan 22;35(1):1-19. doi: 10.1101/gr.278413.123. Genome Res. 2025. PMID: 39843210 Free PMC article. Review.
-
Deep learning and direct sequencing of labeled RNA captures transcriptome dynamics.bioRxiv [Preprint]. 2023 Nov 17:2023.11.17.567581. doi: 10.1101/2023.11.17.567581. bioRxiv. 2023. Update in: NAR Genom Bioinform. 2024 Aug 29;6(3):lqae116. doi: 10.1093/nargab/lqae116. PMID: 38014155 Free PMC article. Updated. Preprint.
-
Detecting m6A RNA modification from nanopore sequencing using a semi-supervised learning framework.bioRxiv [Preprint]. 2024 Jan 7:2024.01.06.574484. doi: 10.1101/2024.01.06.574484. bioRxiv. 2024. Update in: Genome Res. 2024 Nov 20;34(11):1987-1999. doi: 10.1101/gr.278960.124. PMID: 38260359 Free PMC article. Updated. Preprint.
-
Detecting m6A RNA modification from nanopore sequencing using a semisupervised learning framework.Genome Res. 2024 Nov 20;34(11):1987-1999. doi: 10.1101/gr.278960.124. Genome Res. 2024. PMID: 39406497 Free PMC article.
-
Sequencing accuracy and systematic errors of nanopore direct RNA sequencing.BMC Genomics. 2024 May 28;25(1):528. doi: 10.1186/s12864-024-10440-w. BMC Genomics. 2024. PMID: 38807060 Free PMC article.
References
-
- Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH, Bruce M, Pantic N, Admassu T, James P, Warland A, Jordan M, Ciccone J, Serra S, Keenan J, Martin S, McNeill LE, Wallace J, Jayasinghe L, Wright C, Blasco J, Young S, Brocklebank D, Juul S, Clarke J, Turner DJ. Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods. 2018;15(3):201. doi: 10.1038/nmeth.4577. - DOI - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous