Exploring the conformational diversity of proteins
- PMID: 35443909
- PMCID: PMC9023052
- DOI: 10.7554/eLife.78549
Exploring the conformational diversity of proteins
Abstract
An artificial intelligence-based method can predict distinct conformational states of membrane transporters and receptors.
Keywords: G-protein coupled receptors; artificial intelligence; conformational dynamics; machine learning; molecular biophysics; none; protein structure prediction; structural biology; transmembrane protein; transporters.
© 2022, Schlessinger and Bonomi.
Conflict of interest statement
AS, MB No competing interests declared
Figures
Comment on
- doi: 10.7554/eLife.75751
References
-
- Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, Green T, Žídek A, Bates R, Blackwell S, Yim J, Ronneberger O, Bodenstein S, Zielinski M, Bridgland A, Potapenko A, Cowie A, Tunyasuvunakool K, Jain R, Clancy E, Kohli P, Jumper J, Hassabis D. Protein Complex Prediction with Alphafold-Multimer. bioRxiv. 2021 doi: 10.1101/2021.10.04.463034. - DOI
-
- Garibsingh RAA, Ndaru E, Garaeva AA, Shi Y, Zielewicz L, Zakrepine P, Bonomi M, Slotboom DJ, Paulino C, Grewer C, Schlessinger A. Rational design of ASCT2 inhibitors using an integrated experimental-computational approach. PNAS. 2021;118:e2104093118. doi: 10.1073/pnas.2104093118. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
