A quantum processor based on coherent transport of entangled atom arrays
- PMID: 35444318
- PMCID: PMC9021024
- DOI: 10.1038/s41586-022-04592-6
A quantum processor based on coherent transport of entangled atom arrays
Abstract
The ability to engineer parallel, programmable operations between desired qubits within a quantum processor is key for building scalable quantum information systems1,2. In most state-of-the-art approaches, qubits interact locally, constrained by the connectivity associated with their fixed spatial layout. Here we demonstrate a quantum processor with dynamic, non-local connectivity, in which entangled qubits are coherently transported in a highly parallel manner across two spatial dimensions, between layers of single- and two-qubit operations. Our approach makes use of neutral atom arrays trapped and transported by optical tweezers; hyperfine states are used for robust quantum information storage, and excitation into Rydberg states is used for entanglement generation3-5. We use this architecture to realize programmable generation of entangled graph states, such as cluster states and a seven-qubit Steane code state6,7. Furthermore, we shuttle entangled ancilla arrays to realize a surface code state with thirteen data and six ancillary qubits8 and a toric code state on a torus with sixteen data and eight ancillary qubits9. Finally, we use this architecture to realize a hybrid analogue-digital evolution2 and use it for measuring entanglement entropy in quantum simulations10-12, experimentally observing non-monotonic entanglement dynamics associated with quantum many-body scars13,14. Realizing a long-standing goal, these results provide a route towards scalable quantum processing and enable applications ranging from simulation to metrology.
© 2022. The Author(s).
Conflict of interest statement
M.G., V.V. and M.D.L. are co-founders and shareholders of QuEra Computing. A.K. is an executive at and shareholder of QuEra Computing. All other authors declare no competing interests.
Figures














Comment in
-
Versatile neutral atoms take on quantum circuits.Nature. 2022 Apr;604(7906):429-430. doi: 10.1038/d41586-022-01029-y. Nature. 2022. PMID: 35444314 No abstract available.