Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr;604(7906):447-450.
doi: 10.1038/s41586-022-04495-6. Epub 2022 Apr 20.

Localized thermonuclear bursts from accreting magnetic white dwarfs

Affiliations

Localized thermonuclear bursts from accreting magnetic white dwarfs

S Scaringi et al. Nature. 2022 Apr.

Abstract

Nova explosions are caused by global thermonuclear runaways triggered in the surface layers of accreting white dwarfs1-3. It has been predicted4-6 that localized thermonuclear bursts on white dwarfs can also take place, similar to type-I X-ray bursts observed in accreting neutron stars. Unexplained rapid bursts from the binary system TV Columbae, in which mass is accreted onto a moderately strong magnetized white dwarf from a low-mass companion, have been observed on several occasions in the past 40 years7-11. During these bursts, the optical/ultraviolet luminosity increases by a factor of more than three in less than an hour and fades in around ten hours. Fast outflows have been observed in ultraviolet spectral lines7, with velocities of more than 3,500 kilometres per second, comparable to the escape velocity from the white dwarf surface. Here we report on optical bursts observed in TV Columbae and in two additional accreting systems, EI Ursae Majoris and ASASSN-19bh. The bursts have a total energy of approximately 10-6 times than those of classical nova explosions (micronovae) and bear a strong resemblance to type-I X-ray bursts12-14. We exclude accretion or stellar magnetic reconnection events as their origin and suggest thermonuclear runaway events in magnetically confined accretion columns as a viable explanation.

PubMed Disclaimer

References

    1. Bode, M. F. & Evans, A. (eds) Classical Novae 2nd edn (Cambridge Univ. Press, 2008).
    1. Starrfield, S., Iliadis, C. & Hix, W. R. in Classical Novae 2nd edn (eds Bode, M. F. & Evans, A.) 77–101 (Cambridge Univ. Press, 2008).
    1. José, J. et al. 123–321 models of classical novae. Astron. Astrophys. 634, A5 (2020). - DOI
    1. Mitrofanov, I. G. in Close Binary Stars: Observations and Interpretation (eds Popper, D. M. & Ulrich, R. K.) 431–436 (D. Reidel Publishing Co., 1980).
    1. Fabbiano, G. et al. Coordinated X-ray, ultraviolet and optical, observations of AM Her, UGem and SS Cyg. Astrophys. J. 243, 911–925 (1981). - DOI

Publication types

LinkOut - more resources