Rise of the Machines? Predicting Brivaracetam Response Using Machine Learning
- PMID: 35444508
- PMCID: PMC8988725
- DOI: 10.1177/15357597211049052
Rise of the Machines? Predicting Brivaracetam Response Using Machine Learning
Erratum in
-
Erratum 22(1), 22(2), 22(3) and 22(4).Epilepsy Curr. 2022 Dec 1;23(1):61-62. doi: 10.1177/15357597221144381. eCollection 2023 Jan-Feb. Epilepsy Curr. 2022. PMID: 36923327 Free PMC article.
Conflict of interest statement
Declaration of conflicting interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
References
-
- Hoffmann TC, Del Mar C. Clinicians’ expectations of the benefits and harms of treatments, screening, and tests: A systematic review. JAMA Int Med. 2020;4229(3):407-419. - PubMed
-
- van Doorn WPTM, Stassen PM, Borggreve HF, Schalkwijk MJ, Stoffers J, Bekers O, et al.. A comparison of machine learning models versus clinical evaluation for mortality prediction in patients with sepsis. PLoS One [Internet. 2021;16(1):1-15. Available from: DOI: 10.1371/journal.pone.0245157. - DOI - PMC - PubMed