Investigating the combination of plasma amyloid-beta and geroscience biomarkers on the incidence of clinically meaningful cognitive decline in older adults
- PMID: 35445358
- PMCID: PMC9213609
- DOI: 10.1007/s11357-022-00554-y
Investigating the combination of plasma amyloid-beta and geroscience biomarkers on the incidence of clinically meaningful cognitive decline in older adults
Abstract
We investigated combining a core AD neuropathology measure (plasma amyloid-beta [Aβ] 42/40) with five plasma markers of inflammation, cellular stress, and neurodegeneration to predict cognitive decline. Among 401 participants free of dementia (median [IQR] age, 76 [73-80] years) from the Multidomain Alzheimer Preventive Trial (MAPT), 28 (7.0%) participants developed dementia, and 137 (34.2%) had worsening of clinical dementia rating (CDR) scale over 4 years. In the models utilizing plasma Aβ alone, a tenfold increased risk of incident dementia (nonsignificant) and a fivefold increased risk of worsening CDR were observed as each nature log unit increased in plasma Aβ levels. Models incorporating Aβ plus multiple plasma biomarkers performed similarly to models included Aβ alone in predicting dementia and CDR progression. However, improving Aβ model performance for composite cognitive score (CCS) decline, a proxy of dementia, was observed after including plasma monocyte chemoattractant protein 1 (MCP1) and growth differentiation factor 15 (GDF15) as covariates. Participants with abnormal Aβ, GDF15, and MCP1 presented higher CCS decline (worsening cognitive function) compared to their normal-biomarker counterparts (adjusted β [95% CI], - 0.21 [- 0.35 to - 0.06], p = 0.005). In conclusion, our study found limited added values of multi-biomarkers beyond the basic Aβ models for predicting clinically meaningful cognitive decline among non-demented older adults. However, a combined assessment of inflammatory and cellular stress status with Aβ pathology through measuring plasma biomarkers may improve the evaluation of cognitive performance.
Keywords: Aging; Alzheimer’s disease; Amyloid-beta; Cognitive decline; Inflammation; Neurodegeneration.
© 2022. The Author(s), under exclusive licence to American Aging Association.
Conflict of interest statement
Washington University and Randall Bateman have equity ownership interest in C2N Diagnostics and receive income based on technology (blood plasma assay) licensed by Washington University to C2N Diagnostics. RJB receives income from C2N Diagnostics for serving on the scientific advisory board. Washington University, with RJB as co-inventor, has submitted the US nonprovisional patent application “Plasma Based Methods for Determining A-Beta Amyloidosis.” RJB has received honoraria as a speaker/consultant/advisory board member from Amgen, AC Immune, Eisai, and Hoffman-LaRoche, and reimbursement of travel expenses from AC Immune.
Figures



References
-
- Ovod V, Ramsey KN, Mawuenyega KG, Bollinger JG, Hicks T, Schneider T, Sullivan M, Paumier K, Holtzman DM, Morris JC, et al. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimer’s Dement. 2017;13:841–849. doi: 10.1016/j.jalz.2017.06.2266. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials