Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 May;52(5):717-723.
doi: 10.1111/imj.15783. Epub 2022 Apr 21.

Understanding vaccine-induced thrombotic thrombocytopenia (VITT)

Affiliations
Review

Understanding vaccine-induced thrombotic thrombocytopenia (VITT)

Caroline Dix et al. Intern Med J. 2022 May.

Abstract

Vaccine-induced thrombotic thrombocytopenia (VITT) is a rare, but serious, syndrome characterised by thrombocytopenia, thrombosis, a markedly raised D-dimer and the presence of anti-platelet factor-4 (PF4) antibodies following COVID-19 adenovirus vector vaccination. VITT occurs at a rate of approximately 2 per 100 000 first-dose vaccinations and appears exceedingly rare following second doses. Our current understanding of VITT pathogenesis is based on the observations that patients with VITT have antibodies that bind to PF4 and have the ability to form immune complexes that induce potent platelet activation. However, the precise mechanisms that lead to pathogenic VITT antibody development remain a source of active investigation. Thrombosis in VITT can manifest in any vascular bed and affect multiple sites simultaneously. While there is a predilection for splanchnic and cerebral venous sinus thrombosis, VITT also commonly presents with deep vein thrombosis and pulmonary embolism. Pillars of management include anticoagulation with a non-heparin anticoagulant, intravenous immunoglobulin and 'rescue' therapies, such as plasma exchange for severe cases. VITT can be associated with a high mortality rate and significant morbidity, but awareness and optimal therapy have significantly improved outcomes in Australia. A number of questions remain unanswered, including why VITT is so rare, reasons for the predilection for thrombosis in unusual sites, how long pathological antibodies persist, and the optimal duration of anticoagulation. This review will provide an overview of the presentation, diagnostic workup and management strategies for patients with VITT.

Keywords: COVID-19 vaccination; thrombocytopenia; thrombosis.

PubMed Disclaimer

References

    1. Johns Hopkins University . Coronavirus resource centre. 2021. Available from URL: https://coronavirus.jhu.edu/map.html
    1. Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK et al. Safety and efficacy of the ChAdOx1 nCoV‐19 vaccine (AZD1222) against SARS‐CoV‐2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021; 397: 99–111. - PMC - PubMed
    1. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S et al. Safety and efficacy of the BNT162b2 mRNA Covid‐19 vaccine. N Engl J Med 2020; 383: 2603–15. - PMC - PubMed
    1. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCov‐19 vaccination. N Engl J Med 2021; 384: 2092–101. - PMC - PubMed
    1. Schultz NH, Sorvoll IH, Michelsen AE, Munthe LA, Lund‐Johansen F, Ahlen MT et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV‐19 vaccination. N Engl J Med 2021; 384: 2124–30. - PMC - PubMed

Publication types