Stretchable Redox-Active Semiconducting Polymers for High-Performance Organic Electrochemical Transistors
- PMID: 35448913
- DOI: 10.1002/adma.202201178
Stretchable Redox-Active Semiconducting Polymers for High-Performance Organic Electrochemical Transistors
Abstract
Organic electrochemical transistors (OECTs) represent an emerging device platform for next-generation bioelectronics owing to the uniquely high amplification and sensitivity to biological signals. For achieving seamless tissue-electronics interfaces for accurate signal acquisition, skin-like softness and stretchability are essential requirements, but they have not yet been imparted onto high-performance OECTs, largely due to the lack of stretchable redox-active semiconducting polymers. Here, a stretchable semiconductor is reported for OECT devices, namely poly(2-(3,3'-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-[2,2'-bithiophen]-5)yl thiophene) (p(g2T-T)), which gives exceptional stretchability over 200% strain and 5000 repeated stretching cycles, together with OECT performance on par with the state-of-the-art. Validated by systematic characterizations and comparisons of different polymers, the key design features of this polymer that enable the combination of high stretchability and high OECT performance are a nonlinear backbone architecture, a moderate side-chain density, and a sufficiently high molecular weight. Using this highly stretchable polymer semiconductor, an intrinsically stretchable OECT is fabricated with high normalized transconductance (≈223 S cm-1 ) and biaxial stretchability up to 100% strain. Furthermore, on-skin electrocardiogram (ECG) recording is demonstrated, which combines built-in amplification and unprecedented skin conformability.
Keywords: organic electrochemical transistors; redox-active polymer semiconductors; stretchable electronics.
© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Similar articles
-
Stretchable semiconducting polymer aerogel transistors for high-performance biosensors and artificial synapses.Biomaterials. 2025 Nov;322:123416. doi: 10.1016/j.biomaterials.2025.123416. Epub 2025 May 16. Biomaterials. 2025. PMID: 40383088
-
Skin electronics from scalable fabrication of an intrinsically stretchable transistor array.Nature. 2018 Mar 1;555(7694):83-88. doi: 10.1038/nature25494. Epub 2018 Feb 19. Nature. 2018. PMID: 29466334
-
Highly stretchable organic electrochemical transistors with strain-resistant performance.Nat Mater. 2022 May;21(5):564-571. doi: 10.1038/s41563-022-01239-9. Epub 2022 May 2. Nat Mater. 2022. PMID: 35501364
-
Skin-Inspired Electronics: An Emerging Paradigm.Acc Chem Res. 2018 May 15;51(5):1033-1045. doi: 10.1021/acs.accounts.8b00015. Epub 2018 Apr 25. Acc Chem Res. 2018. PMID: 29693379 Review.
-
Organic Electrochemical Transistors (OECTs) Toward Flexible and Wearable Bioelectronics.Molecules. 2020 Nov 13;25(22):5288. doi: 10.3390/molecules25225288. Molecules. 2020. PMID: 33202778 Free PMC article. Review.
Cited by
-
High-Transconductance, Highly Elastic, Durable and Recyclable All-Polymer Electrochemical Transistors with 3D Micro-Engineered Interfaces.Nanomicro Lett. 2022 Sep 12;14(1):184. doi: 10.1007/s40820-022-00930-5. Nanomicro Lett. 2022. PMID: 36094765 Free PMC article.
-
Breathable and Stretchable Organic Electrochemical Transistors with Laminated Porous Structures for Glucose Sensing.Sensors (Basel). 2023 Aug 3;23(15):6910. doi: 10.3390/s23156910. Sensors (Basel). 2023. PMID: 37571694 Free PMC article.
-
Photomediated ion dynamics enables multi-modal learning, memory and sensing in ultralow-voltage organic electrochemical device.Nat Commun. 2025 Jul 28;16(1):6933. doi: 10.1038/s41467-025-61783-1. Nat Commun. 2025. PMID: 40721573 Free PMC article.
-
Organic Electrochemical Transistors for Biomarker Detections.Adv Sci (Weinh). 2024 Jul;11(27):e2305347. doi: 10.1002/advs.202305347. Epub 2024 Jan 23. Adv Sci (Weinh). 2024. PMID: 38263718 Free PMC article. Review.
-
Intrinsically Stretchable Organic Electrochemical Transistors with Rigid-Device-Benchmarkable Performance.Adv Sci (Weinh). 2022 Oct;9(29):e2203418. doi: 10.1002/advs.202203418. Epub 2022 Jul 29. Adv Sci (Weinh). 2022. PMID: 35904088 Free PMC article.
References
-
- J. Kim, A. S. Campbell, B. E.-F. de Ávila, J. Wang, Nat. Biotechnol. 2019, 37, 389.
-
- T. R. Ray, J. Choi, A. J. Bandodkar, S. Krishnan, P. Gutruf, L. Tian, R. Ghaffari, J. A. Rogers, Chem. Rev. 2019, 119, 5461.
-
- L. Bai, C. Elósegui, W. Li, P. Yu, J. Fei, L. Mao, Front. Chem. 2019, 7, 313.
-
- M. Sophocleous, L. Contat-Rodrigo, E. Garcia-Breijo, J. Georgiou, IEEE Sens. J. 2021, 21, 3977.
-
- J. Rivnay, S. Inal, A. Salleo, R. M. Owens, M. Berggren, G. G. Malliaras, Nat. Rev. Mater. 2018, 3, 17086.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous