Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr 21;20(1):70.
doi: 10.1186/s12958-022-00938-x.

Effects of nicotinamide on follicular development and the quality of oocytes

Affiliations

Effects of nicotinamide on follicular development and the quality of oocytes

Ziyu Guo et al. Reprod Biol Endocrinol. .

Abstract

Background: Nicotinamide (NAM) is an important antioxidant, which is closely related to female fertility, but its role has not been clearly elucidated. The purpose of the present study was to investigate the effects of NAM on follicular development at different stages and the quality of oocytes.

Methods: The concentration of NAM in follicular fluid (FF) of 236 women undergoing in vitro fertilization (IVF) was ascertained by enzyme-linked immunosorbent assay (ELISA), and the correlation between NAM and clinical indexes was analyzed. During the in vitro maturation (IVM) of mice cumulus-oocyte complexes (COCs), different concentrations of NAM were added to check the maturation rate and fertilization rate. The reactive oxygen species (ROS) levels in the oocytes treated with different hydrogen peroxide (H2O2) and NAM were assessed. Immunofluorescence staining was performed to measure the proportion of abnormal spindles.

Results: The level of NAM in large follicles was significantly higher than that in small follicles. In mature FF, the NAM concentration was positively correlated with the rates of oocyte maturation and fertilization. Five mM NAM treatment during IVM increased maturation rate and fertilization rate in the oxidative stress model, and significantly reduced the increase of ROS levels induced by H2O2 in mice oocytes.

Conclusions: Higher levels of NAM in FF are associated with larger follicle development. The supplement of 5 mM NAM during IVM may improve mice oocyte quality, reducing damage caused by oxidative stress.

Keywords: Female infertility; Follicle size; Follicular fluid; Nicotinamide; Oocyte quality; Oxidative stress.

PubMed Disclaimer

Conflict of interest statement

All authors declare no conflict of interest.

Figures

Fig. 1
Fig. 1
a NAM concentration in the follicular fluid at different stages of development. b Follicle size: The area under the ROC curve for NAM was 0.685, p = 0.0023. c Oocyte maturation rate: The area under the ROC curve for NAM was 0.610, p = 0.0099. d Normal fertilization rate: The area under the ROC curve for NAM was 0.611, p = 0.0093
Fig. 2
Fig. 2
Effects of different concentrations of NAM on oocyte maturation and fertilization. The effect of NAM on cumulus expansion was observed using a light microscope (a). Percentages of oocytes matured (b) and fertilized (c) in vitro following treatment with NAM. d, f Representative images of mature and immature oocytes. Pronucleus formation in fertilized oocytes (e). PB: Polar body; GV: germinal vesicle. Values are significantly different between groups (*P < 0.05, **P < 0.01). Scale bar = 200 μm
Fig. 3
Fig. 3
Effects of different concentrations of H2O2 on maturation and fertilization. a Maturation rate of oocytes treated with different concentrations of H2O2 in vitro. b Fertilization rate of oocytes treated with different concentrations of H2O2 in vitro. The effects of NAM on the maturation rate of H2O2-exposed oocytes (c) and the fertilization rate (d). Values were significantly different between groups (*P < 0.05, **P < 0.01)
Fig. 4
Fig. 4
NAM treatment impacted ROS levels and spindle abnormality in oocytes damaged by oxidative stress during IVM. Fluorescence staining for ROS (a) and relative fluorescence intensity (c) of MII oocytes in each group (Scale bar = 200 μm). b Typical images of spindle morphology and chromosome arrangements in different groups. d Spindle deformity rate in each group (Scale bar = 5 μm). The asterisk indicates a statistical significance (P < 0.05)

Similar articles

Cited by

References

    1. Sciorio R, Miranian D, Smith GD. Non-invasive oocyte quality assessment. Biol Reprod. 2022;106:274–290. - PubMed
    1. Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103:303–316. - PubMed
    1. Butts CD, Bloom MS, McGough A, Lenhart N, Wong R, Mok-Lin E, et al. Variability of essential and non-essential trace elements in the follicular fluid of women undergoing in vitro fertilization (IVF) Ecotoxicol Environ Saf. 2021;209:111733. - PMC - PubMed
    1. Staicu FD, Canha-Gouveia A, Soriano-Ubeda C, Martinez-Soto JC, Adoamnei E, Chavarro JE, et al. Nitrite and nitrate levels in follicular fluid from human oocyte donors are related to ovarian response and embryo quality. Front Cell Dev Biol. 2021;9:647002. - PMC - PubMed
    1. Liang C, Zhang X, Qi C, Hu H, Zhang Q, Zhu X, et al. UHPLC-MS-MS analysis of oxylipins metabolomics components of follicular fluid in infertile individuals with diminished ovarian reserve. Reprod Biol Endocrinol. 2021;19:143. - PMC - PubMed

LinkOut - more resources