Emerging 3D Printing Strategies for Enzyme Immobilization: Materials, Methods, and Applications
- PMID: 35449952
- PMCID: PMC9016833
- DOI: 10.1021/acsomega.2c00357
Emerging 3D Printing Strategies for Enzyme Immobilization: Materials, Methods, and Applications
Abstract
As the strategies of enzyme immobilization possess attractive advantages that contribute to realizing recovery or reuse of enzymes and improving their stability, they have become one of the most desirable techniques in industrial catalysis, biosensing, and biomedicine. Among them, 3D printing is the emerging and most potential enzyme immobilization strategy. The main advantages of 3D printing strategies for enzyme immobilization are that they can directly produce complex channel structures at low cost, and the printed scaffolds with immobilized enzymes can be completely modified just by changing the original design graphics. In this review, a comprehensive set of developments in the fields of 3D printing techniques, materials, and strategies for enzyme immobilization and the potential applications in industry and biomedicine are summarized. In addition, we put forward some challenges and possible solutions for the development of this field and some possible development directions in the future.
© 2022 The Authors. Published by American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures






References
-
- Xia W.; Zhang K.; Su L.; Wu J. Microbial starch debranching enzymes: Developments and applications. Biotechnol. Adv. 2021, 50, 107786–107805. 10.1016/j.biotechadv.2021.107786. - DOI - PubMed
- Yang H.; Cai G.; Lu J.; Gomez Plaza E. The production and application of enzymes related to the quality of fruit wine. Crit. Rev. Food Sci. Nutr. 2021, 61 (10), 1605–1615. 10.1080/10408398.2020.1763251. - DOI - PubMed
- Zhang Y.; He S.; Simpson B. K. Enzymes in food bioprocessing — novel food enzymes, applications, and related techniques. Curr. Opin. Food Sci. 2018, 19, 30–35. 10.1016/j.cofs.2017.12.007. - DOI
- Zhou Z.; Austin G. L.; Shaffer R.; Armstrong D. D.; Gentry M. S. Antibody-Mediated Enzyme Therapeutics and Applications in Glycogen Storage Diseases. Trends Mol. Med. 2019, 25 (12), 1094–1109. 10.1016/j.molmed.2019.08.005. - DOI - PMC - PubMed
-
- Huang W.-C.; Wang W.; Xue C.; Mao X. Effective Enzyme Immobilization onto a Magnetic Chitin Nanofiber Composite. ACS Sustain. Chem. Eng. 2018, 6 (7), 8118–8124. 10.1021/acssuschemeng.8b01150. - DOI
- Ribeiro E. S.; de Farias B. S.; Sant’Anna Cadaval Junior T. R.; de Almeida Pinto L. A.; Diaz P. S. Chitosan-based nanofibers for enzyme immobilization. Int. J. Biol. Macromol. 2021, 183, 1959–1970. 10.1016/j.ijbiomac.2021.05.214. - DOI - PubMed
- Verma M. L.; Kumar S.; Das A.; Randhawa J. S.; Chamundeeswari M. Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications. Environ. Chem. Lett. 2020, 18 (2), 315–323. 10.1007/s10311-019-00942-5. - DOI
-
- Farmakes J.; Schuster I.; Overby A.; Alhalhooly L.; Lenertz M.; Li Q.; Ugrinov A.; Choi Y.; Pan Y.; Yang Z. Enzyme Immobilization on Graphite Oxide (GO) Surface via One-Pot Synthesis of GO/Metal-Organic Framework Composites for Large-Substrate Biocatalysis. ACS Appl. Mater. Interfaces 2020, 12 (20), 23119–23126. 10.1021/acsami.0c04101. - DOI - PubMed
- Gkantzou E.; Govatsi K.; Chatzikonstantinou A. V.; Yannopoulos S. N.; Stamatis H. Development of a ZnO Nanowire Continuous Flow Microreactor with β-Glucosidase Activity: Characterization and Application for the Glycosylation of Natural Products. ACS Sustain. Chem. Eng. 2021, 9 (22), 7658–7667. 10.1021/acssuschemeng.1c02557. - DOI
- Pan Y.; Li H.; Lenertz M.; Han Y.; Ugrinov A.; Kilin D.; Chen B.; Yang Z. One-pot synthesis of enzyme@metal–organic material (MOM) biocomposites for enzyme biocatalysis. Green Chem. 2021, 23 (12), 4466–4476. 10.1039/D1GC00775K. - DOI
- Patel S. K. S.; Choi H.; Lee J.-K. Multimetal-Based Inorganic–Protein Hybrid System for Enzyme Immobilization. ACS Sustain. Chem. Eng. 2019, 7 (16), 13633–13638. 10.1021/acssuschemeng.9b02583. - DOI
- Cui J.; Ren S.; Sun B.; Jia S. Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes: Current development and future challenges. Coord. Chem. Rev. 2018, 370, 22–41. 10.1016/j.ccr.2018.05.004. - DOI
-
- Liu D.-M.; Chen J.; Shi Y.-P. Advances on methods and easy separated support materials for enzymes immobilization. TrAC, Trends Anal. Chem. 2018, 102, 332–342. 10.1016/j.trac.2018.03.011. - DOI
- Pinheiro B. B.; Rios N. S.; Rodriguez Aguado E.; Fernandez-Lafuente R.; Freire T. M.; Fechine P. B. A.; Dos Santos J. C. S.; Goncalves L. R. B. Chitosan activated with divinyl sulfone: a new heterofunctional support for enzyme immobilization. Application in the immobilization of lipase B from Candida antarctica. Int. J. Biol. Macromol. 2019, 130, 798–809. 10.1016/j.ijbiomac.2019.02.145. - DOI - PubMed
- Tang W.; Ma T.; Zhou L.; Wang G.; Wang X.; Ying H.; Chen C.; Wang P. Polyamine-induced tannic acid co-deposition on magnetic nanoparticles for enzyme immobilization and efficient biodiesel production catalysed by an immobilized enzyme under an alternating magnetic field. Catal. Sci. Technol. 2019, 9 (21), 6015–6026. 10.1039/C9CY01350D. - DOI
- Cui J.; Zhao Y.; Liu R.; Zhong C.; Jia S. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Sci. Rep. 2016, 6, 27928–27940. 10.1038/srep27928. - DOI - PMC - PubMed
- Cui J. D.; Jia S. R. Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: current development and future challenges. Crit. Rev. Biotechnol. 2015, 35 (1), 15–28. 10.3109/07388551.2013.795516. - DOI - PubMed
-
- Liu T.; Yin Y.; Yang Y.; Russell T. P.; Shi S. Layer-by-Layer Engineered All-Liquid Microfluidic Chips for Enzyme Immobilization. Adv. Mater. 2022, 34 (5), 2105386–2105392. 10.1002/adma.202105386. - DOI - PubMed
- Valikhani D.; Bolivar J. M.; Viefhues M.; McIlroy D. N.; Vrouwe E. X.; Nidetzky B. A Spring in Performance: Silica Nanosprings Boost Enzyme Immobilization in Microfluidic Channels. ACS Appl. Mater. Interfaces 2017, 9 (40), 34641–34649. 10.1021/acsami.7b09875. - DOI - PubMed
- Barbosa O.; Ortiz C.; Berenguer-Murcia A.; Torres R.; Rodrigues R. C.; Fernandez-Lafuente R. Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts. Biotechnol. Adv. 2015, 33 (5), 435–456. 10.1016/j.biotechadv.2015.03.006. - DOI - PubMed
- Obst F.; Mertz M.; Mehner P. J.; Beck A.; Castiglione K.; Richter A.; Voit B.; Appelhans D. Enzymatic Synthesis of Sialic Acids in Microfluidics to Overcome Cross-Inhibitions and Substrate Supply Limitations. ACS Appl. Mater. Interfaces 2021, 13 (41), 49433–49444. 10.1021/acsami.1c12307. - DOI - PubMed
- Peschke T.; Skoupi M.; Burgahn T.; Gallus S.; Ahmed I.; Rabe K. S.; Niemeyer C. M. Self-Immobilizing Fusion Enzymes for Compartmentalized Biocatalysis. ACS Catal. 2017, 7 (11), 7866–7872. 10.1021/acscatal.7b02230. - DOI
- Cui J.; Ren S.; Lin T.; Feng Y.; Jia S. Shielding effects of Fe3+-tannic acid nanocoatings for immobilized enzyme on magnetic Fe3O4@silica core shell nanosphere. Chem. Eng. J. 2018, 343, 629–637. 10.1016/j.cej.2018.03.002. - DOI
- Cui J.; Jia S. Organic–inorganic hybrid nanoflowers: A novel host platform for immobilizing biomolecules. Coord. Chem. Rev. 2017, 352, 249–263. 10.1016/j.ccr.2017.09.008. - DOI
Publication types
LinkOut - more resources
Full Text Sources
Research Materials