Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May;28(5):924-931.
doi: 10.3201/eid2805.212535.

Genomic Epidemiology of Global Carbapenemase-Producing Escherichia coli, 2015-2017

Genomic Epidemiology of Global Carbapenemase-Producing Escherichia coli, 2015-2017

Gisele Peirano et al. Emerg Infect Dis. 2022 May.

Abstract

We describe the global molecular epidemiology of 229 carbapenemase-producing Escherichia coli in 36 countries during 2015-2017. Common carbapenemases were oxacillinase (OXA) 181 (23%), New Delhi metallo-β-lactamase (NDM) 5 (20%), OXA-48 (17%), Klebsiella pneumoniae carbapenemase 2 (15%), and NDM-1 (10%). We identified 5 dominant sequence types (STs); 4 were global (ST410, ST131, ST167, and ST405), and 1 (ST1284) was limited to Turkey. OXA-181 was frequent in Jordan (because of the ST410-B4/H24RxC subclade) and Turkey (because of ST1284). We found nearly identical IncX3-blaOXA-181 plasmids among 11 STs from 12 countries. NDM-5 was frequent in Egypt, Thailand (linked with ST410-B4/H24RxC and ST167-B subclades), and Vietnam (because of ST448). OXA-48 was common in Turkey (linked with ST11260). Global K. pneumoniae carbapenemases were linked with ST131 C1/H30 subclade and NDM-1 with various STs. The global carbapenemase E. coli population is dominated by diverse STs with different characteristics and varied geographic distributions, requiring ongoing genomic surveillance.

Keywords: AMR; E. coli; Escherichia coli; antimicrobial resistance; bacteria; carbapenemases; molecular epidemiology; surveillance; whole-genome sequencing.

PubMed Disclaimer

References

    1. Tompkins K, van Duin D. Treatment for carbapenem-resistant Enterobacterales infections: recent advances and future directions. Eur J Clin Microbiol Infect Dis. 2021;40:2053–68. 10.1007/s10096-021-04296-1 - DOI - PMC - PubMed
    1. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. ; WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18:318–27. 10.1016/S1473-3099(17)30753-3 - DOI - PubMed
    1. Pitout JD, Nordmann P, Poirel L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother. 2015;59:5873–84. 10.1128/AAC.01019-15 - DOI - PMC - PubMed
    1. Karlowsky JA, Lob SH, Kazmierczak KM, Young K, Motyl MR, Sahm DF. In vitro activity of imipenem/relebactam against Enterobacteriaceae and Pseudomonas aeruginosa isolated from intraabdominal and urinary tract infection samples: SMART Surveillance United States 2015-2017. J Glob Antimicrob Resist. 2020;21:223–8. 10.1016/j.jgar.2019.10.028 - DOI - PubMed
    1. Kazmierczak KM, Karlowsky JA, de Jonge BLM, Stone GG, Sahm DF. Epidemiology of carbapenem resistance determinants identified in meropenem-nonsusceptible Enterobacterales collected as part of a global surveillance program, 2012 to 2017. Antimicrob Agents Chemother. 2021;65:e0200020. 10.1128/AAC.02000-20 - DOI - PMC - PubMed

Publication types

MeSH terms

Grants and funding