Role of NRF2 in Ovarian Cancer
- PMID: 35453348
- PMCID: PMC9027335
- DOI: 10.3390/antiox11040663
Role of NRF2 in Ovarian Cancer
Abstract
Among gynaecologic malignancies, ovarian cancer is one of the most dangerous, with a high fatality rate and relapse due to the occurrence of chemoresistance. Many researchers demonstrated that oxidative stress is involved in tumour occurrence, growth and development. Nuclear factor erythroid 2-related factor 2 (NRF2) is an important transcription factor, playing an important role in protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) activate NRF2 signalling, inducing the expression of antioxidant enzymes, such as haem oxygenase (HO-1), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD), that protect cells against oxidative stress. However, NRF2 activation in cancer cells is responsible for the development of chemoresistance, inactivating drug-mediated oxidative stress that normally leads to cancer cells' death. In this review, we report evidence from the literature describing the effect of NRF2 on ovarian cancer, with a focus on its function in drug resistance, NRF2 natural and synthetic modulators and its protective function in normal ovarian preservation.
Keywords: NRF2; chemotherapy; cisplatin; ovarian cancer; ovarian preservation.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Mateuszuk L., Campagna R., Kutryb-Zajac B., Kus K., Slominska E.M., Smolenski R.T., Chlopicki S. Reversal of endothelial dysfunction by nicotinamide mononucleotide via extracellular conversion to nicotinamide riboside. Biochem. Pharmacol. 2020;178:114019. doi: 10.1016/j.bcp.2020.114019. - DOI - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Miscellaneous
