Nutritional Quality and Oxidative Stability during Thermal Processing of Cold-Pressed Oil Blends with 5:1 Ratio of ω6/ω3 Fatty Acids
- PMID: 35454668
- PMCID: PMC9030854
- DOI: 10.3390/foods11081081
Nutritional Quality and Oxidative Stability during Thermal Processing of Cold-Pressed Oil Blends with 5:1 Ratio of ω6/ω3 Fatty Acids
Abstract
The growing awareness of consumers means that new products are sought after, which, apart from meeting the basic demand for macronutrients and energy, will have a positive impact on our health. This article is a report on the characteristics of the new oil blends with a nutritious ω6/ω3 fatty acid ratio (5:1), as well as the heat treatment effect on the nutritional value and stability of the oils. Prepared oil blends were heated at 170 and 200 °C. The fatty acid composition and the changes in tocochromanols content during heating were analyzed, as well as the formation process of polar compounds and triacylglycerol polymers. During heating the highest loss of tocochromanols was characteristic of α-tocopherol and α-tocotrienol. The total content of tocopherols after heating was reduced to 1-6% of the original content in the unheated oil blends. The exception was the blend of oil with wheat germ oil, in which a high content of all tocopherols was observed in unheated and heated samples. The content of the polar fraction during heating increased on average 1.9 and 3.1 times in the samples heated at 170 and 200 °C, respectively, compared to the unheated oils. The level of the polar fraction was related to the high content of tocopherols or the presence of tocopherols and tocotrienols in the heated sample. The polymerization of triacylglycerols led mainly to the formation of triacylglycerol dimers. Trimers were observed in a small number of heated samples, especially those heated at 200 °C. Regardless of the changes in heated oils, none of the prepared blends exceeded the limit of the polar fraction content, maintaining the programmed ratio of ω6 to ω3 acids. The principal component analysis (PCA) used to define the clusters showed a large variety of unheated and heated samples. An outlier in all clusters was a blend of oil with wheat germ oil. In these samples, the degradation of tocopherols molecules and the increase of triacylglycerol polymers and the polar fraction content were the slowest.
Keywords: bioactive compounds; cold-pressed oils; fatty acids; heating of oils; nutritional quality; oil quality; oxidative stability; tocopherols.
Conflict of interest statement
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of the data; in the writing of the manuscript, or in the decision to publish the results.
Figures




References
-
- Siger A., Nogala-Kalucka M., Lampart-Szczapa E. The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. J. Food Lipids. 2008;15:137–149. doi: 10.1111/j.1745-4522.2007.00107.x. - DOI
-
- Chew S.C. Cold Pressed Oils. Elsevier; Amsterdam, The Netherlands: 2020. Cold pressed rapeseed (Brassica napus) oil; pp. 65–80. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources