Soil Moisture Variations in Response to Precipitation Across Different Vegetation Types on the Northeastern Qinghai-Tibet Plateau
- PMID: 35463396
- PMCID: PMC9019568
- DOI: 10.3389/fpls.2022.854152
Soil Moisture Variations in Response to Precipitation Across Different Vegetation Types on the Northeastern Qinghai-Tibet Plateau
Abstract
An understanding of soil moisture conditions is crucial for hydrological modeling and hydrological processes. However, few studies have compared the differences between the dynamics of soil moisture content and soil moisture response to precipitation infiltration under different types of vegetation on the Qinghai-Tibet Plateau (QTP). In this study, a soil moisture sensor was used for continuous volumetric soil moisture measurements during 2015 and 2016, with the aim of exploring variations in soil moisture and its response to precipitation infiltration across two vegetation types (alpine meadow and alpine shrub). Our results showed that temporal variations in soil moisture at the surface (0-20 cm) and middle soil layers (40-60 cm) were consistent with precipitation patterns for both vegetation types. However, there was a clear lag in the soil moisture response to precipitation for the deep soil layers (80-100 cm). Soil moisture content was found to be significantly positively related to precipitation and negatively related to air temperature. Aboveground biomass was significantly negatively associated with the surface soil moisture content (0-20 cm) during the growing season. Statistically significant differences were observed between the soil water content of the surface, middle, and deep soil layers for the two vegetation types (p < 0.05). Soil moisture (19.81%) in the surface soil layer was significantly lower than that in the deep soil layer (24.75%) for alpine shrubs, and the opposite trend was observed for alpine meadows. The maximum infiltration depth of alpine shrubs was greater than that of alpine meadows under extremely high-precipitation events, which indicates that alpine shrubs might be less susceptible to surface runoff under extreme precipitation events. Furthermore, low precipitation amounts did not affect precipitation infiltration for either vegetation type, whereas the infiltration depth increased with precipitation for both vegetation types. Our results suggest that a series of small precipitation events may not have the same effect on soil moisture as a single large precipitation event that produces the equivalent total rainfall.
Keywords: Qinghai-Tibet Plateau; precipitation infiltration; soil moisture; temporal variations; vegetation type.
Copyright © 2022 Dai, Fu, Guo, Du, Zhang and Cao.
Conflict of interest statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Figures








References
-
- Biro K., Pradhan B., Buchroithner M., Makeschin F. (2013). land use/land cover change analysis and its impact on soil properties in the northern part of Gadarif region, Sudan. Land Degrad. Dev. 24 90–102. 10.1002/ldr.1116 - DOI
-
- Chen H., Shao M., Li Y. (2008). The characteristics of soil water cycle and water balance on steep grassland under natural and simulated rainfall conditions in the Loess Plateau of China. J. Hydrol. 360 242–251. 10.1016/j.jhydrol.2008.07.037 - DOI
-
- Chen L., Huang Z., Gong J., Fu B., Huang Y. (2007). The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China. Catena 70 200–208. 10.1016/j.catena.2006.08.007 - DOI
-
- Cheng R. R., Chen Q., Zhang J., Shi W., Li G., Du S. (2020). Soil moisture variations in response to precipitation in different vegetation types: a multi-year study in the loess hilly region in China. Ecohydrology 13 e2196.
-
- Dai L., Guo X., Zhang F., Du Y., Ke X., Li Y., et al. (2019a). Seasonal dynamics and controls of deep soil water infiltration in the seasonally-frozen region of the Qinghai-Tibet plateau. J. Hydrol. 571 740–748. 10.1016/j.jhydrol.2019.02.021 - DOI
LinkOut - more resources
Full Text Sources