Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun;9(18):e2200155.
doi: 10.1002/advs.202200155. Epub 2022 Apr 24.

Regulating Dendrite-Free Zinc Deposition by Red Phosphorous-Derived Artificial Protective Layer for Zinc Metal Batteries

Affiliations

Regulating Dendrite-Free Zinc Deposition by Red Phosphorous-Derived Artificial Protective Layer for Zinc Metal Batteries

Tian Wang et al. Adv Sci (Weinh). 2022 Jun.

Abstract

Rational architecture design of the artificial protective layer on the zinc (Zn) anode surface is a promising strategy to achieve uniform Zn deposition and inhibit the uncontrolled growth of Zn dendrites. Herein, a red phosphorous-derived artificial protective layer combined with a conductive N-doped carbon framework is designed to achieve dendrite-free Zn deposition. The Zn-phosphorus (ZnP) solid solution alloy artificial protective layer is formed during Zn plating. Meanwhile, the dynamic evolution mechanism of the ZnP on the Zn anode is successfully revealed. The concentration gradient of the electrolyte on the electrode surface can be redistributed by this protective layer, thereby achieving a uniform Zn-ion flux. The fabricated Zn symmetrical battery delivers a dendrite-free plating/stripping for 1100 h at the current density of 2.0 mA cm-2 . Furthermore, aqueous Zn//MnO2 full cell exhibits a reversible capacity of 200 mAh g-1 after 350 cycles at 1.0 A g-1 . This study suggests an effective solution for the suppression of Zn dendrites in Zn metal batteries, which is expected to provide a deep insight into the design of high-performance rechargeable aqueous Zn-ion batteries.

Keywords: Zn anode; aqueous Zn-ion batteries; artificial protective layer; dendrite-free Zn deposition.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic of the a) Zn stripping/plating process on pristine Zn anode, b) formation of the RP‐NC, and c) Zn stripping/plating process on Zn@RP‐NC anode.
Figure 2
Figure 2
High‐resolution XPS spectra of a) Zn 2p, b) P 2p, and c) C 1s for the RP‐NC and ZnP‐NC (0.25 mA cm–2, 1.0 mAh cm–2) coating. d) XRD patterns. e) CV curves of Zn plating/striping on RP‐NC coated Ti foil. f) Linear polarization curves of the different electrodes. Contact angles of g) pristine Zn, h) Zn@RP‐NC, and Zn@ZnP‐NC with the capacities of i) 0.5 and j)1.0 mAh cm–2 at a current density of 0.25 mA cm–2. k) Schematic illustration of the evolution process of ZnP alloy layer.
Figure 3
Figure 3
Cross‐sectional SEM images and their corresponding EDS mapping images of a‐i,ii) the Zn@RP‐NC and the Zn@RP‐NC anode deposited Zn at 0.25 mA cm–2 with different deposition capacities of b‐i,ii) 0.5 mAh cm–2, c‐i,ii) 1.0 mAh cm–2, and d‐i,ii) 3.0 mAh cm–2, respectively. e,f) HRTEM images of the ZnP alloy and NC. g) Schematic illustration of morphology evolution under quantitative Zn deposition. h) High‐resolution XPS spectra of the Zn 2p, P 2p, and C 1s for the coating layer depending on the Ar+ sputtering time.
Figure 4
Figure 4
Voltage profiles of the pristine Zn, Zn@RP‐NC, and Zn@ZnP‐NC symmetric batteries at the current densities of a) 0.5 mA cm–2 and b) 2.0 mA cm–2 with a capacity of 1.0 mAh cm–2, and c) magnified voltage‐time curves at different cycles in (b). d) Rate performance of Zn symmetric batteries. e,f) SEM images and g) XRD patterns of the pristine Zn and Zn@ZnP‐NC electrodes after 50 cycles at a current density of 0.5 mA cm–2. h) Simulation results of the Zn‐ion flux distribution on the surface of the Zn@ZnP‐NC electrode. i) Schematic depiction of Zn deposition behavior on Zn@ZnP‐NC anode.
Figure 5
Figure 5
Charge/discharge curves of the a) Zn@ZnP‐NC//MnO2 and b) Zn//MnO2 full cells. c) CV curves and d) cycle performance of the Zn@ZnP‐NC//MnO2 and Zn//MnO2 full cells. e) GITT curve and the corresponding ion diffusivity of the Zn@ZnP‐NC//MnO2 full cell. f,g) Optical images of the Zn@ZnP‐NC//MnO2 pouch cell and the working states.

References

    1. a) Parker J. F., Chervin C. N., Pala I. R., Machler M., Burz M. F., Long J. W., Rolison D. R., Science 2017, 356, 415; - PubMed
    2. b) Jia X., Liu C., Neale Z. G., Yang J., Cao G., Chem. Rev. 2020, 120, 7795; - PubMed
    3. c) Li S., Fu J., Miao G., Wang S., Zhao W., Wu Z., Zhang Y., Yang X., Adv. Mater. 2021, 33, 2008424; - PubMed
    4. d) Kundu D., Adams B. D., Duffort V., Vajargah S. H., Nazar L. F., Nat. Energy 2016, 1, 16119;
    5. e) Li C., Sun Z., Yang T., Yu L., Wei N., Tian Z., Cai J., Lv J., Shao Y., Rummeli M. H., Sun J., Liu Z., Adv. Mater. 2020, 32, 2003425. - PubMed
    1. a) Yan H., Li S., Nan Y., Yang S., Li B., Adv. Energy Mater. 2021, 11, 2100186;
    2. b) Hao J., Li B., Li X., Zeng X., Zhang S., Yang F., Liu S., Li D., Wu C., Guo Z., Adv. Mater. 2020, 32, 2003021. - PubMed
    1. a) Xie F., Li H., Wang X., Zhi X., Chao D., Davey K., Qiao S. Z., Adv. Energy Mater. 2021, 11, 2003419;
    2. b) Zou P., Zhang R., Yao L., Qin J., Kisslinger K., Zhuang H., Xin H. L., Adv. Energy Mater. 2021, 11, 2100982;
    3. c) Zhang N., Chen X., Yu M., Niu Z., Cheng F., Chen J., Chem. Soc. Rev. 2020, 49, 4203. - PubMed
    1. a) Qi Zhang J. L., Tang Y., Ji X., Wang ., Angew. Chem., Int. Ed. 2020, 59, 13180; - PubMed
    2. b) Zhang X., Li J., Liu D., Liu M., Zhou T., Qi K., Shi L., Zhu Y., Qian Y., Energy Environ. Sci. 2021, 14, 3120;
    3. c) Yang Y., Liu C., Lv Z., Yang H., Zhang Y., Ye M., Chen L., Zhao J., Li C. C., Adv. Mater. 2021, 33, 2007388; - PubMed
    4. d) Zhang Q., Luan J., Huang X., Wang Q., Sun D., Tang Y., Ji X., Wang H., Nat. Commun. 2020, 11, 3961. - PMC - PubMed
    1. a) Xie X., Liang S., Gao J., Guo S., Guo J., Wang C., Xu G., Wu X., Chen G., Zhou J., Energy Environ. Sci. 2020, 13, 503;
    2. b) Hao J., Li X., Zeng X., Li D., Mao J., Guo Z., Energy Environ. Sci. 2020, 13, 3917;
    3. c) Qiu X., Wang N., Wang Z., Wang F., Wang Y., Angew. Chem., Int. Ed. 2021, 60, 2. - PubMed

LinkOut - more resources