Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jul:146:105525.
doi: 10.1016/j.compbiomed.2022.105525. Epub 2022 Apr 16.

Automated detection of ADHD: Current trends and future perspective

Affiliations
Review

Automated detection of ADHD: Current trends and future perspective

Hui Wen Loh et al. Comput Biol Med. 2022 Jul.

Abstract

Attention deficit hyperactivity disorder (ADHD) is a heterogenous disorder that has a detrimental impact on the neurodevelopment of the brain. ADHD patients exhibit combinations of inattention, impulsiveness, and hyperactivity. With early treatment and diagnosis, there is potential to modify neuronal connections and improve symptoms. However, the heterogeneous nature of ADHD, combined with its comorbidities and a global shortage of diagnostic clinicians, means diagnosis of ADHD is often delayed. Hence, it is important to consider other pathways to improve the efficiency of early diagnosis, including the role of artificial intelligence. In this study, we reviewed the current literature on machine learning and deep learning studies on ADHD diagnosis and identified the various diagnostic tools used. Subsequently, we categorized these studies according to their diagnostic tool as brain magnetic resonance imaging (MRI), physiological signals, questionnaires, game simulator and performance test, and motion data. We identified research gaps include the paucity of publicly available database for all modalities in ADHD assessment other than MRI, as well as a lack of focus on using data from wearable devices for ADHD diagnosis, such as ECG, PPG, and motion data. We hope that this review will inspire future work to create more publicly available datasets and conduct research for other modes of ADHD diagnosis and monitoring. Ultimately, we hope that artificial intelligence can be extended to multiple ADHD diagnostic tools, allowing for the development of a powerful clinical decision support pathway that can be used both in and out of the hospital.

Keywords: Accelerometer; Actigraphy; Artificial intelligence; Attention deficit hyperactivity disorder (ADHD); CPT; Deep learning; ECG; EEG; Genetic; HRV; MRI; Machine learning; PRISMA; Pupillometric; Questionnaires; RST; Social media.

PubMed Disclaimer

LinkOut - more resources