Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May 13;23(3):bbac126.
doi: 10.1093/bib/bbac126.

Integrating specific and common topologies of heterogeneous graphs and pairwise attributes for drug-related side effect prediction

Affiliations

Integrating specific and common topologies of heterogeneous graphs and pairwise attributes for drug-related side effect prediction

Ping Xuan et al. Brief Bioinform. .

Abstract

Motivation: Computerized methods for drug-related side effect identification can help reduce costs and speed up drug development. Multisource data about drug and side effects are widely used to predict potential drug-related side effects. Heterogeneous graphs are commonly used to associate multisourced data of drugs and side effects which can reflect similarities of the drugs from different perspectives. Effective integration and formulation of diverse similarities, however, are challenging. In addition, the specific topology of each heterogeneous graph and the common topology of multiple graphs are neglected.

Results: We propose a drug-side effect association prediction model, GCRS, to encode and integrate specific topologies, common topologies and pairwise attributes of drugs and side effects. First, multiple drug-side effect heterogeneous graphs are constructed using various kinds of similarities and associations related to drugs and side effects. As each heterogeneous graph has its specific topology, we establish separate module based on graph convolutional autoencoder (GCA) to learn the particular topology representation of each drug node and each side effect node, respectively. Since multiple graphs reflect the complex relationships among the drug and side effect nodes and contain common topologies, we construct a module based on GCA with sharing parameters to learn the common topology representations of each node. Afterwards, we design an attention mechanism to obtain more informative topology representations at the representation level. Finally, multi-layer convolutional neural networks with attribute-level attention are constructed to deeply integrate the similarity and association attributes of a pair of drug-side effect nodes. Comprehensive experiments show that GCRS's prediction performance is superior to other comparing state-of-the-art methods for predicting drug-side effect associations. The recall rates in top-ranked candidates and case studies on five drugs further demonstrate GCRS's ability in discovering potential drug-related side effects.

Contact: zhang@hlju.edu.cn.

Keywords: Attentions at representation level and at attribute level; Common topologies of multiple graphs; Graph convolutional autoencoder with sharing parameters; Multiple drug-side effect heterogenous graphs; Specific topology of a single graph.

PubMed Disclaimer

Publication types