Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May;161(5):698-707.
doi: 10.1016/j.ajodo.2021.07.014.

Automated assessment of mandibular shape asymmetry in 3-dimensions

Affiliations

Automated assessment of mandibular shape asymmetry in 3-dimensions

Yi Fan et al. Am J Orthod Dentofacial Orthop. 2022 May.

Abstract

Introduction: This study aimed to develop an automatic pipeline for analyzing mandibular shape asymmetry in 3-dimensions.

Methods: Forty patients with skeletal Class I pattern and 80 patients with skeletal Class III pattern were used. The mandible was automatically segmented from the cone-beam computed tomography images using a U-net deep learning network. A total of 17,415 uniformly sampled quasi-landmarks were automatically identified on the mandibular surface via a template mapping technique. After alignment with the robust Procrustes superimposition, the pointwise surface-to-surface distance between original and reflected mandibles was visualized in a color-coded map, indicating the location of asymmetry. The degree of overall mandibular asymmetry and the asymmetry of subskeletal units were scored using the root-mean-squared-error between the left and right sides. These asymmetry parameters were compared between the skeletal Class I and skeletal Class III groups.

Results: The mandible shape was significantly more asymmetrical in patients with skeletal Class III pattern with positional asymmetry. The condyles were identified as the most asymmetric region in all groups, followed by the coronoid process and the ramus.

Conclusions: This automated approach to quantify mandibular shape asymmetry will facilitate high-throughput image processing for big data analysis. The spatially-dense landmarks allow for evaluating mandibular asymmetry over the entire surface, which overcomes the information loss inherent in conventional linear distance or angular measurements. Precise quantification of the asymmetry can provide important information for individualized diagnosis and treatment planning in orthodontics and orthognathic surgery.

PubMed Disclaimer

MeSH terms

LinkOut - more resources