Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr 8;128(14):146804.
doi: 10.1103/PhysRevLett.128.146804.

Correlations at PT-Symmetric Quantum Critical Point

Affiliations

Correlations at PT-Symmetric Quantum Critical Point

Balázs Dóra et al. Phys Rev Lett. .

Abstract

We consider a PT-symmetric Fermi gas with an exceptional point, representing the critical point between PT-symmetric and symmetry broken phases. The low energy spectrum remains linear in momentum and is identical to that of a Hermitian Fermi gas. The fermionic Green's function decays in a power law fashion for large distances, as expected from gapless excitations, although the exponent is reduced from -1 due to the quantum Zeno effect. In spite of the gapless nature of the excitations, the ground state entanglement entropy saturates to a finite value, independent of the subsystem size due to the non-Hermitian correlation length intrinsic to the system. Attractive or repulsive interaction drives the system into the PT-symmetry broken regime or opens up a gap and protects PT symmetry, respectively. Our results challenge the concept of universality in non-Hermitian systems, where quantum criticality can be masked due to non-Hermiticity.

PubMed Disclaimer

LinkOut - more resources