Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr 27;17(1):176.
doi: 10.1186/s13023-022-02326-5.

Genetic insight into Birt-Hogg-Dubé syndrome in Indian patients reveals novel mutations at FLCN

Affiliations

Genetic insight into Birt-Hogg-Dubé syndrome in Indian patients reveals novel mutations at FLCN

Anindita Ray et al. Orphanet J Rare Dis. .

Abstract

Background: Birt-Hogg-Dubé syndrome (BHDS) is a rare monogenic condition mostly associated with germline mutations at FLCN. It is characterized by either one or more manifestations of primary spontaneous pneumothorax (PSP), skin fibrofolliculomas and renal carcinoma (chromophobe). Here, we comprehensively studied the mutational background of 31 clinically diagnosed BHDS patients and their 74 asymptomatic related members from 15 Indian families.

Results: Targeted amplicon next-generation sequencing (NGS) and Sanger sequencing of FLCN in patients and asymptomatic members revealed a total of 76 variants. Among these variants, six different types of pathogenic FLCN mutations were detected in 26 patients and some asymptomatic family members. Two of the variants were novel mutations: an 11-nucleotide deletion (c.1150_1160delGTCCAGTCAGC) and a splice acceptor mutation (c.1301-1G > A). Two variants were Clinvar reported pathogenic mutations: a stop-gain (c.634C > T) and a 4-nucleotide duplication (c.1329_1332dupAGCC). Two known variants were: hotspot deletion (c.1285delC) and a splice donor mutation (c.1300 + 1G > A). FLCN mutations could not be detected in patients and asymptomatic members from 5 families. All these mutations greatly affected the protein stability and FLCN-FNIP2 interaction as observed by molecular docking method. Family-based association study inferred pathogenic FLCN mutations are significantly associated with BHDS.

Conclusion: Six pathogenic FLCN mutations were detected in patients from 10 families out of 15 families in the cohort. Therefore, genetic screening is necessary to validate the clinical diagnosis. The pathogenic mutations at FLCN affects the protein-protein interaction, which plays key roles in various metabolic pathways. Since, pathogenic mutations could not be detected in exonic regions of FLCN in 5 families, whole genome sequencing is necessary to detect all mutations at FLCN and/or any undescribed gene/s that may also be implicated in BHDS.

Keywords: BHDS; FLCN mutations; Family-based association; Indian patients; Molecular docking; Primary spontaneous pneumothorax.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Pathogenic mutations at FLCN found in patients and asymptomatic members along with their phenotypes. Light blue boxes represent exons and green boxes are exons with pathogenic mutations in FLCN. Most pathogenic mutations were found between exons 10–13. Circles indicate females, squares males. Family numbers are denoted in grey boxes with patients and asymptomatic members harboring pathogenic FLCN mutations. Patient phenotypes are also indicated in red, blue and green colors in individual symbols, and asymptomatic carriers are denoted with a pink dot
Fig. 2
Fig. 2
FLCN exonic mutations and their effect on protein structure and interacting proteins. Green: N-terminal/Longin of FLCN, Brown: C-terminal of FLCN. Structures of homology modelled monomers of FLCN protein—(i) wild-type FLCN with amino-acid residues which were affected by mutations; (ii) stop-gain mutant FLCN affecting chain termination after Glu211 (i.e., p.Gln212*); (iii) indel (11-nucleotide) mutant FLCN affecting chain termination after Leu383 (i.e., p.Val384Phe*2); (iv) indel (single-nucleotide) mutant FLCN, altering the frame from His429 to Thr429, and subsequently creating a stop-codon after Leu435 in the model (i.e., p.His429Thr*39); (v) four-nucleotide duplicate mutant FLCN, altering the frame and terminating the chain after His442 in the model (i.e., p.Ala445Ser*11)
Fig. 3
Fig. 3
Normalized ∆Ct (dCT) values of patients, asymptomatic and unrelated healthy controls obtained from FLCN Taqman copy number assays for exons 4, 8 and 13. For calculation of p-values, 2−∆ct values from patients and asymptomatic members were compared with unrelated controls. Patients and unrelated controls (p-value: 0.019), and asymptomatic members and unrelated controls (p-value: 0.008) had a significant difference in copy number only for exon 8. Non-significant p-values have not been shown in the figures

Similar articles

Cited by

References

    1. Birt AR, Hogg GR, Dubé WJ. Hereditary Multiple Fibrofolliculomas With Trichodiscomas and Acrochordons. Arch Dermatol. 1977;113:1674. - PubMed
    1. Zbar B, Alvord WG, Glenn G, Turner M, Pavlovich CP, Schmidt L, et al. Risk of renal and colonic neoplasms and spontaneous pneumothorax pneurnothorax in the Birt-Hogg-Dubé syndrome. Cancer Epidemiol Biomarkers Prev. 2002;11:393–400. - PubMed
    1. Nickerson ML, Warren MB, Toro JR, Matrosova V, Glenn G, Turner ML, et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt–Hogg–Dubé syndrome. Cancer Cell. 2002;2:157–164. - PubMed
    1. Abolnik IZ, Lossos IS, Zlotogora J, Brauer R. On the inheritance of primary spontaneous pneumothorax. Am J Med Genet. 1991;40:155–158. - PubMed
    1. Schmidt LS, Linehan WM. FLCN: the causative gene for Birt–Hogg–Dubé syndrome. Gene. 2018;640:28–42. - PMC - PubMed