Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr 20;12(18):11164-11189.
doi: 10.1039/d1ra08763k. eCollection 2022 Apr 7.

Diverse and efficient catalytic applications of new cockscomb flower-like Fe3O4@SiO2@KCC-1@MPTMS@CuII mesoporous nanocomposite in the environmentally benign reduction and reductive acetylation of nitroarenes and one-pot synthesis of some coumarin compounds

Affiliations

Diverse and efficient catalytic applications of new cockscomb flower-like Fe3O4@SiO2@KCC-1@MPTMS@CuII mesoporous nanocomposite in the environmentally benign reduction and reductive acetylation of nitroarenes and one-pot synthesis of some coumarin compounds

Morteza Hasanpour Galehban et al. RSC Adv. .

Abstract

In this research, Fe3O4@SiO2@KCC-1@MPTMS@CuII as a new cockscomb flower-like mesoporous nanocomposite was prepared and characterized by various techniques including Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), SEM-based energy-dispersive X-ray (EDX) spectroscopy, inductively coupled plasma-optical emission spectrometry (ICP-OES), thermogravimetric analysis/differential thermal analysis (TGA/DTA), vibrating sample magnetometry (VSM), UV-Vis spectroscopy, and Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) analyses. The as-prepared Fe3O4@SiO2@KCC-1@MPTMS@CuII mesoporous nanocomposite exhibited satisfactory catalytic activity in the reduction and reductive acetylation of nitroarenes in a water medium and solvent-free one-pot synthesis of some coumarin compounds including 3,3'-(arylmethylene)bis(4-hydroxy-2H-chromen-2-ones) (namely, bis-coumarins) (3a-n) and 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles (6a-n) along with acceptable turnover numbers (TONs) and turnover frequencies (TOFs). Furthermore, the mentioned CuII-containing mesoporous nanocatalyst was conveniently recovered by a magnet from reaction environments and reused for at least seven cycles without any significant loss in activity, which confirms its good stability.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Catalytic applications of the cockscomb flower-like Fe3O4@SiO2@KCC-1@MPTMS@CuII mesoporous nanocomposite in the reduction and reductive acetylation of nitroarenes in water and solvent-free one-pot synthesis of some coumarin compounds.
Scheme 1
Scheme 1. Preparation of the cockscomb flower-like Fe3O4@SiO2@KCC-1@MPTMS@CuII mesoporous nanocomposite.
Fig. 2
Fig. 2. FT-IR spectra of the (a) Fe3O4, (b) Fe3O4@SiO2@KCC-1, (c) Fe3O4@SiO2@KCC-1@MPTMS, and (d) Fe3O4@SiO2@KCC-1@MPTMS@CuII nanosystems.
Fig. 3
Fig. 3. PXRD patterns of the (a) Fe3O4 and (b) Fe3O4@SiO2@KCC-1@MPTMS@CuII nanostructures.
Fig. 4
Fig. 4. SEM images of the cockscomb flower-like Fe3O4@SiO2@KCC-1@MPTMS@CuII nanocomposite.
Fig. 5
Fig. 5. TEM images of the dendritic Fe3O4@SiO2@KCC-1@MPTMS@CuII nanocomposite.
Fig. 6
Fig. 6. SEM-based EDX spectrum of the Fe3O4@SiO2@KCC-1@MPTMS@CuII nanocomposite.
Fig. 7
Fig. 7. TGA/DTA diagram of the Fe3O4@SiO2@KCC-1@MPTMS@CuII nanocomposite.
Fig. 8
Fig. 8. VSM diagram of the Fe3O4 NPs and Fe3O4@SiO2@KCC-1@MPTMS@CuII nanocomposite.
Fig. 9
Fig. 9. UV-Vis spectra of the nanocomposite derived from the sources of Cu(NO3)2·6H2O, Cu2O, and Cu0.
Fig. 10
Fig. 10. Nitrogen (N2) gas adsorption–desorption profile of the as-prepared Fe3O4@SiO2@KCC-1@MPTMS@CuII mesoporous nanocomposite.
Scheme 2
Scheme 2. Plausible mechanism of the one-pot reductive acetylation of nitroarenes catalyzed by the Fe3O4@SiO2@KCC-1@MPTMS@CuII nanocomposite in water.
Scheme 3
Scheme 3. Solvent-free one-pot pseudo-three-component synthesis of bis-coumarins (3a–n) catalyzed by the Fe3O4@SiO2@KCC-1@MPTMS@CuII nanocomposite.
Scheme 4
Scheme 4. Solvent-free one-pot three-component synthesis of 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles (6a–n) catalyzed by the Fe3O4@SiO2@KCC-1@MPTMS@CuII nanocomposite.
Scheme 5
Scheme 5. Plausible mechanism for the solvent-free one-pot pseudo-three-component synthesis of bis-coumarins (3a–n) catalyzed by the Fe3O4@SiO2@KCC-1@MPTMS@CuII nanocomposite.
Scheme 6
Scheme 6. Plausible mechanism for the solvent-free one-pot three-component synthesis of 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles (6a–n) catalyzed by the Fe3O4@SiO2@KCC-1@MPTMS@CuII nanocomposite.
Fig. 11
Fig. 11. Recoverability and reusability experiments of the dendritic Fe3O4@SiO2@KCC-1@MPTMS@CuII mesoporous nanocomposite.
Fig. 12
Fig. 12. TEM image of the recycled Fe3O4@SiO2@KCC-1@MPTMS@CuII mesoporous nanocomposite.

Similar articles

Cited by

References

    1. Erythropel H. C. Zimmerman J. B. de Winter T. M. Petitjean L. Melnikov F. Lam C. H. Lounsbury A. W. Mellor K. E. Janković N. Z. Tu Q. Pincus L. N. Falinski M. M. Shi W. Coish P. Plata D. L. Anastas P. A. Green Chem. 2018;20:1929–1961.
    2. Pérez-Venegas M. Juaristi E. ACS Sustainable Chem. Eng. 2020;8:8881–8893.
    3. Mousavi H. Int. J. Bio. Macromol. 2021;186:1003–1166. - PubMed
    4. Rimaz M. Mousavi H. Khalili B. Aali F. J. Chin. Chem. Soc. 2018;65:1389–1397.
    5. Rimaz M. Mousavi H. Behnam M. Khalili B. Curr. Chem. Lett. 2016;5:145–154.
    6. Rimaz M. Jalalian Z. Mousavi H. Prager R. H. Tetrahedron Lett. 2016;57:105–109.
    7. Nivetha N. Thangamani A. J. Mol. Struct. 2021;1242:130716.
    1. Li A. Y. Moores A. ACS Sustainable Chem. Eng. 2019;7:10182–10197.
    2. Hutching G. J. ACS Cent. Sci. 2018;4:1095–1101. - PMC - PubMed
    3. Anastas P. T. Kirchhoff M. M. Williamson T. C. Appl. Catal., A. 2001;221:3–13.
    4. Centi G. Perathoner S. Top. Catal. 2009;52:948–961.
    5. Lamb A. C. Lee A. F. Wilson K. Aust. J. Chem. 2020;73:832–852.
    1. Goodman E. D. Zhao C. Cargnello M. ACS Cent. Sci. 2020;6:1916–1937. - PMC - PubMed
    2. Schlögl R. Angew. Chem., Int. Ed. 2015;54:3465–3520. - PubMed
    3. Lung R. Du X. Huang Y. Jiang X. Zhang Q. Guo Y. Liu K. Qiao B. Wang A. Zhang T. Chem. Rev. 2020;120:11986–12043. - PubMed
    4. Lippi R. Coghlan C. J. Howard S. C. Easton C. D. Gu Q. Patel J. Sumby C. J. Kennedy D. F. Dooman C. J. Aust. J. Chem. 2020;73:1271–1283.
    5. Tadon N. Patil S. M. Tadon R. Kumar P. RSC Adv. 2021;11:21291–21300. - PMC - PubMed
    1. Polshetiwar V. Luque R. Fihri A. Zhu H. Bouhara M. Basset J.-M. Chem. Rev. 2011;111:3036–3075. - PubMed
    2. Shylesh S. Schünemann V. Thiel W. R. Angew. Chem., Int. Ed. 2010;49:3428–3459. - PubMed
    3. Wang D. Astruc D. Chem. Rev. 2014;114:6949–6985. - PubMed
    4. Gawande M. B. Luque R. Zboril R. ChemCatChem. 2014;6:3312–3313.
    5. Karimi B. Mansouri F. Mirzaei H. M. ChemCatChem. 2015;7:1736–1789.
    6. Mohammadi Ziarani G. Kheilkordi Z. Mohajer F. Badiei A. Luque R. RSC Adv. 2021;11:17456–17477. - PMC - PubMed
    7. Pawar A. Gajare S. Patil A. Kurane R. Rashinkar G. Patil S. Res. Chem. Intermed. 2021;47:2801–2820.
    8. Aghaei-Hashjin M. Yahyazadeh A. Abbaspour-Gilandeh E. RSC Adv. 2021;11:23491–23505. - PMC - PubMed
    9. Mohammadsaleh F. Dehdashti Jahromi M. Hajipour A. R. Hosseini S. M. Niknam K. RSC Adv. 2021;11:20812–20823. - PMC - PubMed
    10. Hosseini Mohtasham N. Gholizadeh M. Res. Chem. Intermed. 2021;47:2507–2525.
    1. Maity A. Polshettiwar V. ChemSusChem. 2017;10:3866–3913. - PMC - PubMed
    2. Huang X. Tao Z. Praskavich J. C. Goswami A. Al-Sharab J. F. Minko T. Polshettiwar V. Asefa T. Langmuir. 2014;30:10886–10898. - PubMed
    3. Shaban M. Hasanzadeh M. RSC Adv. 2020;10:37116–37133. - PMC - PubMed
    4. Hao P. Peng B. Shan B.-Q. Yang T.-Q. Zhang K. Nanoscale Adv. 2020;2:1792–1810. - PMC - PubMed
    5. Wang A. Du X. Liu Z. Shi S. Lv H. J. Mater. Chem. A. 2019;7:5111–5152.