Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 5;11(27):16537-16546.
doi: 10.1039/d1ra02381k. eCollection 2021 Apr 30.

TCCA-mediated oxidative rearrangement of tetrahydro-β-carbolines: facile access to spirooxindoles and the total synthesis of (±)-coerulescine and (±)-horsfiline

Affiliations

TCCA-mediated oxidative rearrangement of tetrahydro-β-carbolines: facile access to spirooxindoles and the total synthesis of (±)-coerulescine and (±)-horsfiline

Manda Sathish et al. RSC Adv. .

Abstract

Multi-reactive centered reagents are beneficial in chemical synthesis due to their advantage of minimal material utilization and formation of less by-products. Trichloroisocyanuric acid (TCCA), a reagent with three reactive centers, was employed in the synthesis of spirooxindoles through the oxidative rearrangement of various N-protected tetrahydro-β-carbolines. In this protocol, low equivalents of TCCA were required to access spirooxindoles (up to 99% yield) with a wide substrate scope. Furthermore, the applicability and robustness of this protocol were proven for the gram-scale total synthesis of natural alkaloids such as (±)-coerulescine (1) and (±)-horsfiline (2) in excellent yields.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Representative examples of bioactive spirooxindoles (1–4).
Fig. 2
Fig. 2. Comparison of present work with previous methods.
Scheme 1
Scheme 1. (A) Imine formation of N2 unprotected THBCs. (B) Plausible reaction mechanism for the oxidative rearrangement of N2-protected THBCs.
Scheme 2
Scheme 2. Gram-scale synthesis of (±)-coerulescine (1) and (±)-horsfiline (2).

References

    1. Ye N. Chen H. Wold E. A. Shi P. Y. Zhou J. ACS Infect. Dis. 2016;2:382–392. doi: 10.1021/acsinfecdis.6b00041. - DOI - PMC - PubMed
    2. Zhou B. Yang Y. Shi J. Luo Z. Li Y. J. Org. Chem. 2013;78:2897–2907. doi: 10.1021/jo302655u. - DOI - PubMed
    3. Li C. Chan C. Heimann A. C. Danishefsky S. J. Angew. Chem., Int. Ed. 2007;46:1444–1447. doi: 10.1002/anie.200604071. - DOI - PubMed
    4. White J. D. Li Y. Ihle D. C. J. Org. Chem. 2010;75:3569–3577. doi: 10.1021/jo1002714. - DOI - PubMed
    1. Mei G. J. Shi F. Chem. Commun. 2018;54:6607–6621. doi: 10.1039/C8CC02364F. - DOI - PubMed
    2. Pelay-Gimeno M. Glas A. Koch O. Grossmann T. N. Angew. Chem., Int. Ed. 2015;54:8896–8927. doi: 10.1002/anie.201412070. - DOI - PMC - PubMed
    3. Bhaskar G. Arun Y. Balachandran C. Saikumar C. Perumal P. T. Eur. J. Med. Chem. 2012;51:79–91. doi: 10.1016/j.ejmech.2012.02.024. - DOI - PubMed
    1. Barakat A. Shahidul Islam M. Mansur Ghawas H. Mohammed Al-Majid A. El-Senduny F. F. Badria F. A. Elshaier Y. A. M. M. Ghabbour H. A. RSC Adv. 2018;8:14335–14346. doi: 10.1039/C8RA02358A. - DOI - PMC - PubMed
    2. Yu B. Zheng Y.-C. Shi X.-J. Qi P.-P. Liu H.-M. Anti-Cancer Agents Med. Chem. 2016;16:1315–1324. doi: 10.2174/1871520615666151102093825. - DOI - PubMed
    3. Chen L. Xie J. Song H. Liu Y. Gu Y. Wang L. Wang Q. J. Agric. Food Chem. 2016;64:6508–6516. doi: 10.1021/acs.jafc.6b02683. - DOI - PubMed
    4. Senwar K. R. Sharma P. Reddy T. S. Jeengar M. K. Nayak V. L. Naidu V. G. M. Kamal A. Shankaraiah N. Eur. J. Med. Chem. 2015;102:413–424. doi: 10.1016/j.ejmech.2015.08.017. - DOI - PubMed
    1. Yang Y.-T. Zhu J.-F. Liao G. C. Xu H.-J. Yu B. Curr. Med. Chem. 2018;25:2233–2244. doi: 10.2174/0929867325666171129131311. - DOI - PubMed
    1. El-Hashash M. A. Rizk S. A. J. Heterocycl. Chem. 2017;54:1776–1784. doi: 10.1002/jhet.2758. - DOI