Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 May 30;11(32):19433-19449.
doi: 10.1039/d1ra03324g. eCollection 2021 May 27.

Solvent-free synthesis of propargylamines: an overview

Affiliations
Review

Solvent-free synthesis of propargylamines: an overview

Ravi Manujyothi et al. RSC Adv. .

Abstract

Propargylamines are a class of compounds with many pharmaceutical and biological properties. A green approach to synthesize such compounds is very relevant. This review aims to describe the solvent-free synthetic approaches towards propargylamines via A3 and KA2 coupling reactions covering the literature up to 2021.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Some drug molecules containing propargylamine backbone.
Fig. 2
Fig. 2. Some of the important molecules synthesized from propargylamines.
Scheme 1
Scheme 1. General mechanism for propargylamine synthesis.
Scheme 2
Scheme 2. Cu–Ru catalyzed propagylamine synthesis.
Scheme 3
Scheme 3. Synthesis of propargylamines catalyzed by silica-CHDA-Cu.
Scheme 4
Scheme 4. Synthesis of fluorinated propargylamines.
Scheme 5
Scheme 5. Synthesis of propargylamines catalyzed by CuI-zeolite catalyst.
Scheme 6
Scheme 6. Proposed mechanism of multicomponent reaction catalyzed by CuI-USY (reproduced with permission from ref. 49).
Scheme 7
Scheme 7. Synthesis of propargylamines via multicomponent acetylene-Mannich reaction by using impregnated copper on magnetite as catalyst.
Scheme 8
Scheme 8. Synthesis of propargylamines catalyzed by CuNPs/TiO2.
Scheme 9
Scheme 9. Synthesis of propargylamines via KA2 coupling.
Scheme 10
Scheme 10. Synthesis of propargyalmines catalyzed by eggshell-supported-Cu(ii) salophen complex.
Scheme 11
Scheme 11. Cu/HM catalyzed synthesis of tetrasubstituted propargylamines via KA2 coupling.
Scheme 12
Scheme 12. CuO/Fe2O3 catalyzed synthesis of trisubstituted propargylamines via decarboxylative A3 coupling reaction.
Scheme 13
Scheme 13. CuO/Fe2O3 catalyzed synthesis of trisubstituted propargylamines via decarboxylative KA2 coupling reaction.
Scheme 14
Scheme 14. Synthesis of propargylamines via KA2 coupling catalyzed by CuI supported Amberlyst A-21.
Scheme 15
Scheme 15. Synthesis of propargylamines catalyzed by CuI/HTNT-5.
Scheme 16
Scheme 16. Synthesis of propargylamines catalyzed by Cu(ii)-imine ligand@SiO2@Fe3O4.
Scheme 17
Scheme 17. Synthesis of propargylamines by A3 coupling catalyzed by FMNC.
Scheme 18
Scheme 18. Synthesis of propargylamines catalyzed by Cu/ZnO/Al2O3 nanocatalyst.
Scheme 19
Scheme 19. Synthesis of propargylamines via A3 coupling catalyzed by PS–PEG–BPy–CuBr2.
Scheme 20
Scheme 20. Copper-catalyzed synthesis of propargylamines via KA2 coupling.
Scheme 21
Scheme 21. Synthesis of propargylamines via KA2 coupling catalyzed by Cu dopped ZIF-8.
Scheme 22
Scheme 22. Synthesis of propargylamines catalyzed by Fe3O4@CuSiO3 catalyst.
Scheme 23
Scheme 23. Synthesis of propargylamines by A3 coupling.
Scheme 24
Scheme 24. Propargylamine synthesis catalyzed by ZnO nanoparticles.
Scheme 25
Scheme 25. Synthesis of propargylamines catalyzed by Zn(OTf)2.
Scheme 26
Scheme 26. Synthesis of propargylamines in the presence of ZnII/HAP/Fe3O4 under solvent-free conditions.
Scheme 27
Scheme 27. [Zn(l-proline)2] catalyzed synthesis of propargylamines.
Scheme 28
Scheme 28. Synthesis of propargylamines catalyzed by ZnCl2–TiO2 NPs.
Scheme 29
Scheme 29. A tentative mechanism for the synthesis of propargylamine catalyzed by ZnCl2–TiO2 nanoparticles (NPs) (reproduced with permission from ref. 71).
Scheme 30
Scheme 30. Synthesis of propargylamines containing quaternary carbon center catalyzed by AuBr3.
Scheme 31
Scheme 31. Catalytic synthesis of proparglymines via three-component addition reaction.
Scheme 32
Scheme 32. Plausible mechanism of synthesis of propargylamines (reproduced with permission from ref. 73).
Scheme 33
Scheme 33. Nickel catalyzed synthesis of propargylamines via three component coupling.
Scheme 34
Scheme 34. Synthesis of propargylamines catalyzed by MnCl2.
Scheme 35
Scheme 35. Synthesis of propargylamines using silica-xerogel-supported indium(iii) composite (In/SiO2) under conventional method.
Scheme 36
Scheme 36. Synthesis of propargylamine using silica-xerogel-supported indium(iii) composite (In/SiO2) under microwave assisted method.
Scheme 37
Scheme 37. MIL-101(Cr)–SO3Ag catalyzed synthesis of propargylamines.
Scheme 38
Scheme 38. Synthesis of propargylamines catalyzed by Pd–Cu NWs.
Scheme 39
Scheme 39. Plausible mechanism of A3 coupling reaction catalyzed by Pd–Cu NWs (reproduced with permission from ref. 78).
Scheme 40
Scheme 40. Synthesis of chiral propargylamines.
Scheme 41
Scheme 41. Synthesis of propargylamines via A3 coupling catalyzed by SnCl2.
Scheme 42
Scheme 42. Diastereoselective synthesis of propargylamines.
Scheme 43
Scheme 43. Silica-immobilized NHC–CuI complex catalyzed propargylamine synthesis.
Scheme 44
Scheme 44. Propargylamine synthesis catalyzed by PS–NHC–Ag(i).
Scheme 45
Scheme 45. Propargylamines synthesis catalyzed by LiOTf.
Scheme 46
Scheme 46. Synthesis of propargylamines catalyzed by Cu–Ni bimetallic catalyst.
Scheme 47
Scheme 47. Synthesis of propargylamines catalyzed by CNT–Fe3O4–fibroin–Ag under solvent-free conditions.
Scheme 48
Scheme 48. Synthesis of propargylamines by decarboxylative A3 coupling under metal and solvent-free conditions.
Scheme 49
Scheme 49. LAIL@MNP catalyzed synthesis of propargylamines.
None
Ravi Manujyothi
None
Thaipparambil Aneeja
None
Gopinathan Anilkumar

Similar articles

Cited by

References

    1. Lauder K. Toscani A. Scalacci N. Castagnolo D. Chem. Rev. 2017;117:14091–14200. doi: 10.1021/acs.chemrev.7b00343. - DOI - PubMed
    1. Boulton A. A. Davis B. A. Durden D. A. Dyck L. E. Juorio A. V. Li X. M. Paterson I. A. Yu P. H. Drug Dev. Res. 1997;42:150–156. doi: 10.1002/(SICI)1098-2299(199711/12)42:3/4<150::AID-DDR6>3.0.CO;2-P. - DOI
    1. Marco-Contelles J. Unzeta M. Bolea I. Esteban G. Ramsay R. R. Romero A. Martínez-Murillo R. Carreiras M. C. Ismaili L. Front. Neurosci. 2016;10:1–7. - PMC - PubMed
    1. Chen J. J. Swope D. M. Dashtipour K. Clin. Ther. 2007;29:1825–1849. doi: 10.1016/j.clinthera.2007.09.021. - DOI - PubMed
    1. Maruyama W. Youdim M. B. H. Naoi M. Ann. N. Y. Acad. Sci. 2001;939:320–329. doi: 10.1111/j.1749-6632.2001.tb03641.x. - DOI - PubMed