Roles of solution concentration and shear rate in the shear-induced crystallization of P3HT
- PMID: 35479231
- PMCID: PMC9033596
- DOI: 10.1039/d1ra02594e
Roles of solution concentration and shear rate in the shear-induced crystallization of P3HT
Abstract
Microfluidic shear can induce the formation of flow-induced precursors (FIPs) of poly(3-hexylthiophene) (P3HT) in toluene. The shear temperature, solution concentration and shear rate determine the FIP content. The FIP is metastable. Upon fixing the shear rate at 1.0 s-1 and the shear temperature at 60 °C (or 80 °C for a 5.0 mg mL-1 solution), when the shear stress σ exceeds the critical values, a further increase in σ may destroy the formed FIP during shear, leading to the amount of FIPs first increasing when the solution concentration increases from 0.2 mg mL-1 to 0.4 mg mL-1 and then gradually decreasing with a further increase in the solution concentration from 0.7 mg mL-1 to 5.0 mg mL-1. Upon fixing the shear temperature at 60 °C (or 80 °C for a 5.0 mg mL-1 solution), the high concentration P3HT solution has high viscosity, leading to more mechanical energy being dissipated under shear, resulting in the most suitable shear rate increases with increasing solution concentration to reduce the entropy. The reduction in entropy is related to the formation of FIPs, and thus, the most suitable shear rate at which the largest FIP content can be obtained increases with increasing solution concentration. The FIP content dramatically affects the crystallization of P3HT in toluene. Increasing the FIP content can accelerate nucleation and crystallization, and change the crystallization mechanism from a second-order reaction to a first-order reaction of P3HT aggregates.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures









Similar articles
-
Sonocrystallization of poly(3-hexylthiophene) in a marginal solvent.Soft Matter. 2018 May 9;14(18):3590-3600. doi: 10.1039/c8sm00142a. Soft Matter. 2018. PMID: 29683180
-
1,2,3,4-Bis(p-methylbenzylidene sorbitol) accelerates crystallization and improves hole mobility of poly(3-hexylthiophene).Nanotechnology. 2016 Feb 12;27(6):06LT01. doi: 10.1088/0957-4484/27/6/06LT01. Epub 2016 Jan 13. Nanotechnology. 2016. PMID: 26757678
-
Crystallization-Induced Phase Segregation Based on Double-Crystalline Blends of Poly(3-hexylthiophene) and Poly(ethylene glycol)s.Macromol Rapid Commun. 2010 Mar 16;31(6):532-8. doi: 10.1002/marc.200900770. Epub 2010 Jan 5. Macromol Rapid Commun. 2010. PMID: 21590937
-
Ordering of poly(3-hexylthiophene) in solution and on substrates induced by concentrated sulfuric acid.J Phys Chem B. 2013 Nov 27;117(47):14842-8. doi: 10.1021/jp405837m. Epub 2013 Nov 14. J Phys Chem B. 2013. PMID: 24228758
-
The dynamic Rab11-FIPs.Biochem Soc Trans. 2009 Oct;37(Pt 5):1032-6. doi: 10.1042/BST0371032. Biochem Soc Trans. 2009. PMID: 19754446 Review.
Cited by
-
Effect of Ultraviolet Activation on Sub-ppm NO2 Sensing Dynamics of Poly(3-hexylthiophene)-Bearing Graft Copolymers.Sensors (Basel). 2022 Dec 14;22(24):9824. doi: 10.3390/s22249824. Sensors (Basel). 2022. PMID: 36560194 Free PMC article.
References
-
- O'Connor B. Joseph Kline R. Conrad B. R. Richter L. J. Gundlach D. Toney M. F. DeLongchamp D. M. Adv. Funct. Mater. 2011;21:3697–3705. doi: 10.1002/adfm.201100904. - DOI
-
- Zhang X. Yuan N. Ding S. Wang D. Li L. Hu W. Bo Z. Zhou J. Huo H. J. Mater. Chem. C. 2017;5:3983–3992. doi: 10.1039/C7TC00916J. - DOI
-
- Zhao X. Yuan N. Zheng Y. Wang D. Li L. Bo Z. Zhou J. Huo H. Org. Electron. 2016;28:189–196. doi: 10.1016/j.orgel.2015.10.036. - DOI
LinkOut - more resources
Full Text Sources