Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug 16;11(45):27782-27786.
doi: 10.1039/d1ra05914a.

Visible-light synthesis of 4-substituted-chroman-2-ones and 2-substituted-chroman-4-ones via doubly decarboxylative Giese reaction

Affiliations

Visible-light synthesis of 4-substituted-chroman-2-ones and 2-substituted-chroman-4-ones via doubly decarboxylative Giese reaction

Marek Moczulski et al. RSC Adv. .

Abstract

Doubly decarboxylative, photoredox synthesis of 4-substituted-chroman-2-ones and 2-substituted-chroman-4-ones is described. The reaction involves two independent decarboxylation processes: the first one initiating the cycle and the second completing the process. Visible light, photoredox catalyst, base, anhydrous solvent and inert atmosphere constitute the key parameters for the success of the developed transformation. The protocol proved applicable for coumarin-3-carboxylic acids and chromone-3-carboxylic acids as well as N-(acyloxy)phthalimide which served as precursors of the corresponding alkyl radicals.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. The importance of chroman-2-ones and chroman-4-ones.
Scheme 2
Scheme 2. The importance of decarboxylative approaches in organic synthesis and the synthetic objectives of our study.
Scheme 3
Scheme 3. Doubly decarboxylative Giese reaction – reaction involving coumarin-3-carboxylic acids 2.
Scheme 4
Scheme 4. Doubly decarboxylative Giese reaction – reaction involving chromone-3-carboxylic acids 4.
Scheme 5
Scheme 5. Doubly decarboxylative Giese reaction – mechanism.

References

    1. Kamat D. P. Tilve S. G. Kamat V. P. Kirtany J. K. Syntheses and Biological Activities of Chroman-2-ones. Org. Prep. Proc. Int. 2015;47:1. doi: 10.1080/00304948.2015.983805. - DOI
    2. Okamoto T. Kobayashi T. Yoshida S. Chemical aspects of coumarin compounds for the prevention of hepatocellular carcinomas. Curr. Med. Chem. 2005;5:47. - PubMed
    3. Asai F. Iinuma M. Tanaka T. Mizuno M. Complex flavonoids in farinose exudate from Pityrogramma calomelanos. Phytochemistry. 1991;30:3091. doi: 10.1016/S0031-9422(00)98259-1. - DOI
    1. Andersen Ø. M. and Markham K. R., Flavonoids: Chemistry, Biochemistry and Applications. CRC, Taylor & Francis, Boca Raton, FL, 2006
    2. Emami S. Ghanbarimasir Z. Recent advances of chroman-4-one derivatives: synthetic approaches and bioactivities. Eur. J. Med. Chem. 2015;93:539. doi: 10.1016/j.ejmech.2015.02.048. - DOI - PubMed
    3. Masters K.-S. Bräse S. Xanthones from fungi, lichens, and bacteria: the natural products and their synthesis. Chem. Rev. 2012;112:3717. doi: 10.1021/cr100446h. - DOI - PubMed
    4. Patil A. D. Freyer A. J. Eggleston D. S. Haltiwanger R. C. Bean M. F. Taylor P. B. Caranfa M. J. Breen A. L. Bartus H. R. Johnson R. K. The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. J. Med. Chem. 1993;36:4131. doi: 10.1021/jm00078a001. - DOI - PubMed
    5. Galinis D. L. Fuller R. W. McKee T. C. II Cardellina J. H. Gulakowski R. J. McMahon J. B. Boyd M. R. Structure-Activity Modifications of the HIV-1 Inhibitors (+)-Calanolide A and (−)-Calanolide B1. J. Med. Chem. 1996;39:4507. doi: 10.1021/jm9602827. - DOI - PubMed
    1. Ee G. C. L. S. Mah H. Teh S. S. Rahmani M. Go R. Taufiq-Yap Y. H. Soulamarin, a new coumarin from Stem Bark of Calophyllum soulattri. Molecules. 2011;16:9721. doi: 10.3390/molecules16119721. - DOI - PMC - PubMed
    1. Shen Y. Wang L. Khalil A. Kuo Y. Chromanones and dihydrocoumarins from Calophyllum blancoi. Chem. Pharm. Bull. 2004;52:402. doi: 10.1248/cpb.52.402. - DOI - PubMed
    1. Genovese D. Conti C. Tomae P. Desideri N. Setin M. Catone S. Flore L. Effect of chloro-, cyano-, and amidino-substituted flavanoids on enterovirus infection in vitro. Antiviral Res. 1995;27:123. doi: 10.1016/0166-3542(95)00088-4. - DOI - PubMed