How do real animals account for the passage of time during associative learning?
- PMID: 35482634
- PMCID: PMC9561011
- DOI: 10.1037/bne0000516
How do real animals account for the passage of time during associative learning?
Abstract
Animals routinely learn to associate environmental stimuli and self-generated actions with their outcomes such as rewards. One of the most popular theoretical models of such learning is the reinforcement learning (RL) framework. The simplest form of RL, model-free RL, is widely applied to explain animal behavior in numerous neuroscientific studies. More complex RL versions assume that animals build and store an explicit model of the world in memory. To apply these approaches to explain animal behavior, typical neuroscientific RL models make implicit assumptions about how real animals represent the passage of time. In this perspective, I explicitly list these assumptions and show that they have several problematic implications. I hope that the explicit discussion of these problems encourages the field to seriously examine the assumptions underlying timing and reinforcement learning. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Figures



Similar articles
-
Explicit and implicit reinforcement learning across the psychosis spectrum.J Abnorm Psychol. 2017 Jul;126(5):694-711. doi: 10.1037/abn0000259. Epub 2017 Apr 13. J Abnorm Psychol. 2017. PMID: 28406662 Free PMC article.
-
Nutrient-Sensitive Reinforcement Learning in Monkeys.J Neurosci. 2023 Mar 8;43(10):1714-1730. doi: 10.1523/JNEUROSCI.0752-22.2022. Epub 2023 Jan 20. J Neurosci. 2023. PMID: 36669886 Free PMC article.
-
A probabilistic successor representation for context-dependent learning.Psychol Rev. 2024 Mar;131(2):578-597. doi: 10.1037/rev0000414. Epub 2023 May 11. Psychol Rev. 2024. PMID: 37166847
-
Reinforcement Learning and Episodic Memory in Humans and Animals: An Integrative Framework.Annu Rev Psychol. 2017 Jan 3;68:101-128. doi: 10.1146/annurev-psych-122414-033625. Epub 2016 Sep 2. Annu Rev Psychol. 2017. PMID: 27618944 Free PMC article. Review.
-
Habits, action sequences and reinforcement learning.Eur J Neurosci. 2012 Apr;35(7):1036-51. doi: 10.1111/j.1460-9568.2012.08050.x. Eur J Neurosci. 2012. PMID: 22487034 Free PMC article. Review.
Cited by
-
Striatal Dopamine: The Cement of the Brain?: Jeong H, Taylor A, Floeder JR, et al. Mesolimbic dopamine release conveys causal associations. Science 2022;378:eabq6740.: Jeong H, Taylor A, Floeder JR, et al. Mesolimbic dopamine release conveys causal associations. Science 2022;378:eabq6740.Mov Disord. 2023 May;38(5):742. doi: 10.1002/mds.29379. Epub 2023 Mar 31. Mov Disord. 2023. PMID: 37002590 Free PMC article. No abstract available.
-
Reward timescale controls the rate of behavioural and dopaminergic learning.bioRxiv [Preprint]. 2024 Sep 6:2023.03.31.535173. doi: 10.1101/2023.03.31.535173. bioRxiv. 2024. PMID: 37034619 Free PMC article. Preprint.
-
Learning to express reward prediction error-like dopaminergic activity requires plastic representations of time.Nat Commun. 2024 Jul 12;15(1):5856. doi: 10.1038/s41467-024-50205-3. Nat Commun. 2024. PMID: 38997276 Free PMC article.
-
Prospective contingency explains behavior and dopamine signals during associative learning.Nat Neurosci. 2025 Jun;28(6):1280-1292. doi: 10.1038/s41593-025-01915-4. Epub 2025 Mar 18. Nat Neurosci. 2025. PMID: 40102680 Free PMC article.
-
Mesolimbic dopamine release conveys causal associations.Science. 2022 Dec 23;378(6626):eabq6740. doi: 10.1126/science.abq6740. Epub 2022 Dec 23. Science. 2022. PMID: 36480599 Free PMC article.
References
-
- Akhlaghpour H (2022). An RNA-based theory of natural universal computation. Journal of Theoretical Biology 537, 110984. - PubMed
-
- Beylin AV, Gandhi CC, Wood GE, Talk AC, Matzel LD, and Shors TJ (2001). The role of the hippocampus in trace conditioning: temporal discontinuity or task difficulty? Neurobiol Learn Mem 76, 447–461. - PubMed