Optoelectronic Neural Interfaces Based on Quantum Dots
- PMID: 35482955
- PMCID: PMC9100496
- DOI: 10.1021/acsami.1c25009
Optoelectronic Neural Interfaces Based on Quantum Dots
Abstract
Optoelectronic modulation of neural activity is an emerging field for the investigation of neural circuits and the development of neural therapeutics. Among a wide variety of nanomaterials, colloidal quantum dots provide unique optoelectronic features for neural interfaces such as sensitive tuning of electron and hole energy levels via the quantum confinement effect, controlling the carrier localization via band alignment, and engineering the surface by shell growth and ligand engineering. Even though colloidal quantum dots have been frontier nanomaterials for solar energy harvesting and lighting, their application to optoelectronic neural interfaces has remained below their significant potential. However, this potential has recently gained attention with the rise of bioelectronic medicine. In this review, we unravel the fundamentals of quantum-dot-based optoelectronic biointerfaces and discuss their neuromodulation mechanisms starting from the quantum dot level up to electrode-electrolyte interactions and stimulation of neurons with their physiological pathways. We conclude the review by proposing new strategies and possible perspectives toward nanodevices for the optoelectronic stimulation of neural tissue by utilizing the exceptional nanoscale properties of colloidal quantum dots.
Keywords: nanocrystal; neural interface; neural stimulation; optoelectronics; quantum dot.
Conflict of interest statement
The authors declare no competing financial interest.
Figures











Similar articles
-
Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.Acc Chem Res. 2013 Nov 19;46(11):2607-15. doi: 10.1021/ar400078u. Epub 2013 Jun 4. Acc Chem Res. 2013. PMID: 23734589
-
The donor-supply electrode enhances performance in colloidal quantum dot solar cells.ACS Nano. 2013 Jul 23;7(7):6111-6. doi: 10.1021/nn401918d. Epub 2013 Jun 7. ACS Nano. 2013. PMID: 23738495
-
Coupled Colloidal Quantum Dot Molecules.Acc Chem Res. 2021 Mar 2;54(5):1178-1188. doi: 10.1021/acs.accounts.0c00691. Epub 2021 Jan 18. Acc Chem Res. 2021. PMID: 33459013 Free PMC article.
-
Quantum shells versus quantum dots: suppressing Auger recombination in colloidal semiconductors.Chem Commun (Camb). 2023 Sep 21;59(76):11337-11348. doi: 10.1039/d3cc02091f. Chem Commun (Camb). 2023. PMID: 37676487 Review.
-
Recent advancement on quantum dot-coupled heterojunction structures in catalysis:A review.Chemosphere. 2024 Jun;357:141944. doi: 10.1016/j.chemosphere.2024.141944. Epub 2024 Apr 11. Chemosphere. 2024. PMID: 38614402 Review.
Cited by
-
Fluorescent detection of emerging virus based on nanoparticles: From synthesis to application.Trends Analyt Chem. 2023 Apr;161:116999. doi: 10.1016/j.trac.2023.116999. Epub 2023 Feb 23. Trends Analyt Chem. 2023. PMID: 36852170 Free PMC article. Review.
-
A Retina-Inspired Optoelectronic Synapse Using Quantum Dots for Neuromorphic Photostimulation of Neurons.Adv Sci (Weinh). 2024 May;11(18):e2401753. doi: 10.1002/advs.202401753. Epub 2024 Mar 6. Adv Sci (Weinh). 2024. PMID: 38447181 Free PMC article.
-
MnO2 Nanoflower Integrated Optoelectronic Biointerfaces for Photostimulation of Neurons.Adv Sci (Weinh). 2023 Sep;10(25):e2301854. doi: 10.1002/advs.202301854. Epub 2023 Jun 29. Adv Sci (Weinh). 2023. PMID: 37386797 Free PMC article.
-
In Vivo Penetrating Microelectrodes for Brain Electrophysiology.Sensors (Basel). 2022 Nov 23;22(23):9085. doi: 10.3390/s22239085. Sensors (Basel). 2022. PMID: 36501805 Free PMC article. Review.
-
Tailoring p-Type Behavior in ZnO Quantum Dots through Enhanced Sol-Gel Synthesis: Mechanistic Insights into Zinc Vacancies.J Phys Chem Lett. 2024 Feb 15;15(6):1755-1764. doi: 10.1021/acs.jpclett.3c03519. Epub 2024 Feb 7. J Phys Chem Lett. 2024. PMID: 38324709 Free PMC article.
References
-
- Lozano A. M.; Lipsman N.; Bergman H.; Brown P.; Chabardes S.; Chang J. W.; Matthews K.; McIntyre C. C.; Schlaepfer T. E.; Schulder M.; Temel Y.; Volkmann J.; Krauss J. K. Deep Brain Stimulation: Current Challenges and Future Directions. Nat. Rev. Neurol. 2019, 15 (3), 148–160. 10.1038/s41582-018-0128-2. - DOI - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources