Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug;109(6):689-702.
doi: 10.1007/s11103-022-01267-8. Epub 2022 Apr 29.

Construction of two regulatory networks related to salt stress and lignocellulosic synthesis under salt stress based on a Populus davidiana × P. bolleana transcriptome analysis

Affiliations

Construction of two regulatory networks related to salt stress and lignocellulosic synthesis under salt stress based on a Populus davidiana × P. bolleana transcriptome analysis

Xiaojin Lei et al. Plant Mol Biol. 2022 Aug.

Abstract

Construction of ML-hGRN for the salt pathway in Populus davidiana × P. bolleana. Construction of ML-hGRN for the lignocellulosic pathway in Populus davidiana × P. bolleana under salt stress. Many woody plants, including Populus davidiana × P. bolleana, have made great contributions to human production and life. High salt is one of the main environmental factors that restricts the growth of poplar. This study found that high salt could induce strong biochemical changes in poplar. To detect the effect of salt treatment on gene expression, 18 libraries were sequenced on the Illumina sequencing platform. The results identified a large number of early differentially expressed genes (DEGs) and a small number of late DEGs, which indicated that most of the salt response genes of poplar were early response genes. In addition, 197 TFs, including NAC, ERF, and other TFs related to salt stress, were differentially expressed during salt treatment, which indicated that these TFs may play an important role in the salt stress response of poplar. Based on the RNA-seq analysis results, multilayered hierarchical gene regulatory networks (ML-hGRNs) of salt stress- and lignocellulosic synthesis-related DEGs were constructed using the GGM algorithm. The lignocellulosic synthesis regulatory network under salt stress revealed that lignocellulosic synthesis might play an important role in the process of salt stress resistance. Furthermore, the NAC family transcription factor PdbNAC83, which was found in the upper layer in both pathways, was selected to verify the accuracy of the ML-hGRNs. DAP-seq showed that the binding site of PdbNAC83 included a "TT(G/A)C(G/T)T" motif, and ChIP-PCR further verified that PdbNAC83 can regulate the promoters of at least six predicted downstream genes (PdbNLP2-2, PdbZFP6, PdbMYB73, PdbC2H2-like, PdbMYB93-1, PdbbHLH094) by binding to the "TT(G/A)C(G/T)T" motif, which indicates that the predicted regulatory network diagram obtained in this study is relatively accurate. In conclusion, a species-specific salt response pathway might exist in poplar, and this finding lays a foundation for further study of the regulatory mechanism of the salt stress response and provides new clues for the use of genetic engineering methods to create high-quality and highly resistant forest germplasms.

Keywords: ChIP-PCR; DAP-Seq; ML-hGRNs; Populus davidiana × P. bolleana; Salt response; Transcriptome.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Boutet E, Lieberherr D, Tognolli M, Schneider M, Bansal P, Bridge AJ, Poux S, Bougueleret L, Xenarios I (2016) UniProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: how to use the entry view. Methods Mol Biol 1374:23–54. https://doi.org/10.1007/978-1-4939-3167-5_2 - DOI - PubMed
    1. Chabannes M, Ruel K, Yoshinaga A, Chabbert B, Jauneau A, Joseleau JP, Boudet AM (2001) In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J 28:271–282. https://doi.org/10.1046/j.1365-313X.2001.01159.x - DOI - PubMed
    1. Chen S, Jiang J, Li H, Liu G (2012) The salt-responsive transcriptome of Populus simonii × Populus nigra via DGE. Gene 504:203–212. https://doi.org/10.1016/j.gene.2012.05.023 - DOI - PubMed
    1. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560 - DOI - PubMed - PMC
    1. Chen K, Song M, Guo Y, Liu L, Xue H, Dai H, Zhang Z (2019) MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress-responsive signals. Plant Biotechnol J 17:2341–2355. https://doi.org/10.1111/pbi.13151 - DOI - PubMed - PMC

LinkOut - more resources