Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data
- PMID: 35487922
- PMCID: PMC9055051
- DOI: 10.1038/s41467-022-30033-z
Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data
Abstract
Recent technological advancements have enabled spatially resolved transcriptomic profiling but at multi-cellular pixel resolution, thereby hindering the identification of cell-type-specific spatial patterns and gene expression variation. To address this challenge, we develop STdeconvolve as a reference-free approach to deconvolve underlying cell types comprising such multi-cellular pixel resolution spatial transcriptomics (ST) datasets. Using simulated as well as real ST datasets from diverse spatial transcriptomics technologies comprising a variety of spatial resolutions such as Spatial Transcriptomics, 10X Visium, DBiT-seq, and Slide-seq, we show that STdeconvolve can effectively recover cell-type transcriptional profiles and their proportional representation within pixels without reliance on external single-cell transcriptomics references. STdeconvolve provides comparable performance to existing reference-based methods when suitable single-cell references are available, as well as potentially superior performance when suitable single-cell references are not available. STdeconvolve is available as an open-source R software package with the source code available at https://github.com/JEFworks-Lab/STdeconvolve .
© 2022. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures





Similar articles
-
SpatialCTD: A Large-Scale Tumor Microenvironment Spatial Transcriptomic Dataset to Evaluate Cell Type Deconvolution for Immuno-Oncology.J Comput Biol. 2024 Sep;31(9):871-885. doi: 10.1089/cmb.2024.0532. Epub 2024 Aug 8. J Comput Biol. 2024. PMID: 39117342
-
ScType enables fast and accurate cell type identification from spatial transcriptomics data.Bioinformatics. 2024 Jul 1;40(7):btae426. doi: 10.1093/bioinformatics/btae426. Bioinformatics. 2024. PMID: 38936341 Free PMC article.
-
RETROFIT: Reference-free deconvolution of cell-type mixtures in spatial transcriptomics.bioRxiv [Preprint]. 2023 Jun 9:2023.06.07.544126. doi: 10.1101/2023.06.07.544126. bioRxiv. 2023. PMID: 37333291 Free PMC article. Preprint.
-
Computational solutions for spatial transcriptomics.Comput Struct Biotechnol J. 2022 Sep 1;20:4870-4884. doi: 10.1016/j.csbj.2022.08.043. eCollection 2022. Comput Struct Biotechnol J. 2022. PMID: 36147664 Free PMC article. Review.
-
A comprehensive comparison on cell-type composition inference for spatial transcriptomics data.Brief Bioinform. 2022 Jul 18;23(4):bbac245. doi: 10.1093/bib/bbac245. Brief Bioinform. 2022. PMID: 35753702 Free PMC article. Review.
Cited by
-
Deconvolution algorithms for inference of the cell-type composition of the spatial transcriptome.Comput Struct Biotechnol J. 2022 Dec 5;21:176-184. doi: 10.1016/j.csbj.2022.12.001. eCollection 2023. Comput Struct Biotechnol J. 2022. PMID: 36544473 Free PMC article. Review.
-
Spatial downregulation of CD74 signatures may drive invasive component development in part-solid lung adenocarcinoma.iScience. 2023 Aug 21;26(10):107699. doi: 10.1016/j.isci.2023.107699. eCollection 2023 Oct 20. iScience. 2023. PMID: 37810252 Free PMC article.
-
SpatialcoGCN: deconvolution and spatial information-aware simulation of spatial transcriptomics data via deep graph co-embedding.Brief Bioinform. 2024 Mar 27;25(3):bbae130. doi: 10.1093/bib/bbae130. Brief Bioinform. 2024. PMID: 38557675 Free PMC article.
-
Why it's worth making computational methods easy to use.Nature. 2023 Apr 27. doi: 10.1038/d41586-023-01440-z. Online ahead of print. Nature. 2023. PMID: 37106102 No abstract available.
-
CellsFromSpace: a fast, accurate, and reference-free tool to deconvolve and annotate spatially distributed omics data.Bioinform Adv. 2024 May 30;4(1):vbae081. doi: 10.1093/bioadv/vbae081. eCollection 2024. Bioinform Adv. 2024. PMID: 38915885 Free PMC article.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous